Science China Chemistry

, Volume 55, Issue 9, pp 1931–1939 | Cite as

Immobilization of Escherichia coli for detection of phage T4 using surface plasmon resonance

  • ChangQing Xiao
  • FengLei Jiang
  • Bo Zhou
  • Ran Li
  • Yi Liu


Phage contamination is a very serious and unavoidable problem in modern fermentation industry. It is necessary to develop sensitive and rapid phage detection methods for the early detection of phage contamination. In the present work, a real-time, rapid, specific and quantitative phage T4 detection method based on surface plasmon resonance (SPR) technique has been introduced. Escherichia coli was immobilized onto the preformed MPA self-assembled monolayer (SAM) through the widely used EDC/NHS cross-linking reaction as the recognition element. The bacteria immobilization was verified efficiently through the electrochemical measurements and fluorescence microscopy observations. The specific adsorption was much stronger than the non-specific adsorption of phage T4 binding to the biosensor surface modified by E. coli, and the latter could be neglected. The detection sensitivity reached 1×107 PFU/mL within 10 min. Within the experimental phage concentrations, the linear correlation between the SPR response and the phage concentration was good. The results suggest that the SPR technique is a potentially powerful tool for the phage or other virus detections, as a label-free, real-time, and rapid method.


phage detection virus detection surface plasmon resonance (SPR) microbe-based biosensor self-assembled monolayer (SAM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duckworth DH. Who discovered bacteriophage? Bacteriol Rev, 1976, 40: 793–802Google Scholar
  2. 2.
    Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J Infect Chemother, 2005, 11: 211–219CrossRefGoogle Scholar
  3. 3.
    Petty NK, Evans TJ, Fineran PC, Salmond GP. Biotechnological exploitation of bacteriophage research. Trends Biotechnol, 2007, 25: 7–15CrossRefGoogle Scholar
  4. 4.
    Jones DT, Shirley M, Wu X, Keis S. Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol, 2000, 2: 21–26Google Scholar
  5. 5.
    Łoś M, Czyż A, Sell E, Węgrzyn A, Neubauer P, Węcgrzyn G. Bacteriophage contamination: Is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet, 2004, 45: 111–120Google Scholar
  6. 6.
    Łoś M, Golec P, Łoś JM, Węglewska-Jurkiewicz A, Czyż A, Węgrzyn A, Węgrzyn G, Neubauer P. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol, 2007, 7: e13CrossRefGoogle Scholar
  7. 7.
    Gabig-Ciminska M, Los M, Holmgren A, Albers J, Czyz A, Hintsche R, Wegrzyn G, Enfors SO. Detection of bacteriophage infection and prophage induction in bacterial cultures by means of electric DNA chips. Anal Biochem, 2004, 324: 84–91CrossRefGoogle Scholar
  8. 8.
    Łoś M, Łoś JM, Blohm L, Spillner E, Grunwald T, Albers J, Hintsche R, Węgrzyn G. Rapid detection of viruses using electrical biochips and anti-virion sera. Lett Appl Microbiol, 2005, 40: 479–485CrossRefGoogle Scholar
  9. 9.
    Uttenthaler E, Schräml M, Mandel J, Drost S. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosens Bioelectron, 2001, 16: 735–743CrossRefGoogle Scholar
  10. 10.
    Zhu H, White IM, Suter JD, Zourob M, Fan X. Opto-fluidic microring resonator for sensitive label-free viral detection. Analyst, 2008, 133: 356–360CrossRefGoogle Scholar
  11. 11.
    Qi C, Lin Y, Feng J, Wang ZH, Zhu CF, Meng YH, Yan XY, Wan LJ, Jin G. Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. Virus Res, 2009, 140: 79–84CrossRefGoogle Scholar
  12. 12.
    García-Aljaro C, Muñoz-Berbel X, Jenkins ATA, Blanch AR, Muñoz FX. Surface plasmon resonance assay for real-time monitoring of somatic coliphages in wastewaters. Appl Environ Microbiol, 2008, 74(13): 4054–4058CrossRefGoogle Scholar
  13. 13.
    Homola J, Yee SS. Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B, 1999, 54: 3–15CrossRefGoogle Scholar
  14. 14.
    Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 2003, 377: 528–539CrossRefGoogle Scholar
  15. 15.
    Gopinath SCB. Biosensing applications of surface plasmon resonance-based biacore technology. Sens Actuators B, 2010, 150: 722–733CrossRefGoogle Scholar
  16. 16.
    Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001Google Scholar
  17. 17.
    Kropinski AM, Mazzocco A, Waddell TE, Linghor E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol, 2009, 501: 69–76CrossRefGoogle Scholar
  18. 18.
    Tao NJ, Boussaad S, Huang WL, Arechabaleta RA, D’Agnese J. High resolution surface plasmon resonance spectroscopy. Rev Sci Instrum, 1999, 70: 4656–4660CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Xu M, Wang Y, Toledo F, Zhou F. Studies of metal ion binding by apo-metallothioneins attached onto preformed self—assembled monolayers using a highly sensitive surface plasmon resonance spectrometer. Sens Actuators B, 2007, 123: 784–792CrossRefGoogle Scholar
  20. 20.
    Song F, Zhou F, Wang J, Tao N, Lin J, Vellanoweth RL, Morquecho Y, Laidman JW. Detection of oligonucleotide hybridization at femtomolar level and sequence-specific gene analysis of the Arabidopsis thaliana leaf extract with an ultrasensitive surface plasmon resonance spectrometer. Nucleic Acids Res, 2002, 30: e72CrossRefGoogle Scholar
  21. 21.
    Zhou B, Li R, Zhang Y, Liu Y. Kinetic analysis of the interaction between amphotericin B and human serum albumin using surface plasmon resonance and fluorescence spectroscopy. Photochem Photobiol Sci, 2008, 7: 453–459CrossRefGoogle Scholar
  22. 22.
    Nagata K, Handa H. Real-time Analysis of Biomolecular Interactions: Applications of BIACORE. Berlin: Springer Verlag, 2000Google Scholar
  23. 23.
    Wink Th, van Zuilen SJ, Bult A, van Bennekom WP. Self-assembled monolayers for biosensors. Analyst, 1997, 122: 43–50CrossRefGoogle Scholar
  24. 24.
    Chen H, Heng CK, Puiu PD, Zhou XD, Lee AC, Lim TM, Tan SN. Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy. Anal Chim Acta, 2005, 554: 52–59CrossRefGoogle Scholar
  25. 25.
    Ding SJ, Chang BW, Wu CC, Lai MF, Chang HC. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes. Electrochim Acta, 2005, 50: 3660–3666CrossRefGoogle Scholar
  26. 26.
    Furukawa H, Yamada H, Mizushima S. Interaction of bacteriophage T4 with reconstituted cell envelopes of Escherichia coli K-12. J Bacteriol, 1979, 140: 1071–1080Google Scholar
  27. 27.
    Labedan B, Goldberg EB. Requirement for membrane potential in injection of phage T4 DNA. Proc Natl Acad Sci USA, 1979, 76: 4669–4673CrossRefGoogle Scholar
  28. 28.
    Moldovan R, Chapman-McQuiston E, Wu XL. On kinetics of phage adsorption. Biophys J, 2007, 93: 303–315CrossRefGoogle Scholar
  29. 29.
    Storms ZJ, Arsenault E, Sauvageau D, Cooper DG. Bacteriophage adsorption efficiency and its effect on amplification. Bioprocess Biosyst Eng, 2010, 33: 823–831CrossRefGoogle Scholar
  30. 30.
    Yu F, Mizushima S. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol, 1982, 151: 718–722Google Scholar
  31. 31.
    Myszka DG. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol, 1997, 8: 50–57CrossRefGoogle Scholar
  32. 32.
    Myszka DG. Improving biosensor analysis. J Mol Recognit, 1999, 12: 279–284CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • ChangQing Xiao
    • 1
    • 2
  • FengLei Jiang
    • 1
  • Bo Zhou
    • 1
  • Ran Li
    • 1
  • Yi Liu
    • 1
    • 3
  1. 1.State Key Laboratory of Virology; Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Edueation); College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.Department of Chemistry and Life ScienceHubei University of EducationWuhanChina
  3. 3.Department of Chemistry and Life SciencesXianning UniversityXianningChina

Personalised recommendations