Skip to main content
Log in

A novel microwave absorber — BaAl2Fe10O19/poly(m-toluidine) composite: Preparation and electromagnetic properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

BaFe10Al2O19/poly(m-toluidine) (BFA/PMT) composites were synthesized by in-situ polymerization of m-toluidine in the presence of BaFe10Al2O19 particles. The structure, composition and morphology of the obtained samples were characterized by using XRD, FT-IR, UV-visible spectroscopy, SEM and TEM techniques. Their electrical conductivity, magnetic property and microwave absorbing property were measured by the four-probe meter, the vibrating sample magnetometer and the vector network analyzer, respectively. The results indicated that BFA particles were coated effectively by PMT polymer and some interactions between PMT and BFA particles existing in the composites. The conductivity of BFA/PMT composite is smaller than that of pure polymers and its saturation magnetization is a little smaller than that of pure BFA. The influence of the constitution and film thickness of absorbent on its microwave absorbing property is evident. The microwave absorbing properties of the BFA/PMT composites are better than those of pure BFA and PMT. When optimizing the mass rate of BFA/PMT to 0.3, the absorbent with 2 mm film thickness has the minimum reflection loss of −28.26 dB at approximate 14.24 GHz, and the maximum available bandwidth of 8.8 GHz, respectively. The results show that these composites can be used as advancing absorption and shielding materials due to their favorable microwave absorbing property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Motome Y, Furukawa N, Nagaosa N. Randomness effect on multicritical phenomena in double-exchange systems. J Magn Magn Mater, 2004, 272–276: 1805–1806

    Article  Google Scholar 

  2. Qiu JX, Gu MY. Crystal structure and magnetic properties of barium ferrite synthesized using GSPC and HEBM. J Alloys Compd, 2006, 415: 209–212

    Article  CAS  Google Scholar 

  3. Abbas SM, Chatterjee R, Dixit AK, Kumar AVR, Goel TC. Electromagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite. J Appl Phys, 2007, 101: 074105/1–6

    Article  CAS  Google Scholar 

  4. Deng JG, Din XB, Zhang WC. Magnetic and conducting Fe3O4 cross linked polyaniline nanopartieles with core-shell structure. Polymer, 2002, 43: 2179–2184

    Article  CAS  Google Scholar 

  5. Ting TH, Yu RP, Jau YN. Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Mater Chem Phys, 2011, 126: 364–368

    Article  CAS  Google Scholar 

  6. Hosseini SH, Mohseni SH, Asadniac A, Kerdari H. Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J Alloys Compd, 2011, 509: 4682–4687

    Article  CAS  Google Scholar 

  7. Li LC, Xiang C, Liang XX, Hao Bin. Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic properties. Synth Met, 2010, 160: 28–34

    Article  CAS  Google Scholar 

  8. Ting TH, Wu KH. Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J Magn Magn Mater, 2010, 322: 2160–2166

    Article  CAS  Google Scholar 

  9. Yang CC, Gung YJ, Shih CC, Hung WC, Wu KH. Synthesis, infrared and microwave absorbing properties of (BaFe12O19+BaTiO3)/polyaniline composite. J Magn Magn Mater, 2011, 323: 933–938

    Article  CAS  Google Scholar 

  10. Li LC, Jiang J, Xu F. Novel polyaniline-LiNi0.5La0.02Fe1.98O4 nanocomposites prepared via an in situ polymerization. Eur Polym J, 2006, 42: 2221–2227

    Article  CAS  Google Scholar 

  11. Liu J, Wan M. Composites of polypyrrole with conducting and ferromagnetic behaviors. J Polym Sci A Polym Chem, 2000, 38: 2734–2739

    Article  CAS  Google Scholar 

  12. Liang XX, Tong GX, Li LC. A novel material of absorbing electromagnetic wave: Synthesis and performance of Ba1−x LaxFe10Al2O19 ferrites. Acta Chim Sinica, 2010, 40: 1584–1591

    Google Scholar 

  13. Feng W, Sun E, Fujii A, Wu H, Niihara K, Yoshino K. Synthesis and characterization of photoconducting polyaniline-TiO2 nanocomposite. Bull Chem Soc Jpn, 2000,73: 2627–2633

    Article  CAS  Google Scholar 

  14. Lee D, Char K. Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites. Polym Degrad Stab, 2002, 75: 555–560

    Article  CAS  Google Scholar 

  15. Gan LM, Zhang LH, Chan HSO, Chew CH. Preparation of conducting polyaniline coated barium sulfate nano particles in inverse micromulsions. Mater Chem Phys, 1995, 40: 94–98

    Article  CAS  Google Scholar 

  16. Izumi CMS, Constantino VRL, Ferreira AMC, Temperini MLA. Spectroscopic characterization of polyaniline doped with transition metal salts. Synth Met, 2006, 156: 654–663

    Article  CAS  Google Scholar 

  17. Li X, Wang G, Li X. Surface modification of nano-SiO2 particles ysing polyaniline. Surf Coat Technol, 2005, 197: 56–60

    Article  CAS  Google Scholar 

  18. Xu P, Han X, Wang M. Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J Phys Chem C, 2007, 111:5866–5870

    Article  CAS  Google Scholar 

  19. Li LC, Qiu HZ, Qian HS, Hao B, Liang XX. Controlled synthesis of the poly(N-methylaniline)/ Zn0.6Mn0.2Ni0.2Fe2O4 composites and its electrical-magnetic property. J Phys Chem C, 2010, 114: 6712–6717

    Article  CAS  Google Scholar 

  20. Li X, Wang G, Li X, Lu DM. Surface properties of polyaniline/nano-TiO2 composites. Appl Surf Sci, 2004, 229: 395–401

    Article  CAS  Google Scholar 

  21. Waldron D. Infrared spectra of ferrites. Phys Rev, 1955, 99: 1727–1735

    Article  CAS  Google Scholar 

  22. Wang S, Tan Z, Li Y, Sun LX, Zhang T. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim Acta, 2006, 441: 191–194

    Article  CAS  Google Scholar 

  23. Kulkarni MV, Viswanath AK, Mulik UP. Studies on chemically synthesized organic acid doped poly(o-toluidine). Mater Chem Phys, 2005, 89: 1–5

    Article  CAS  Google Scholar 

  24. Lee J, Cui C. Electrochemical copolymerization of aniline and metanilic acid. J Electroanal Chem, 1994, 403: 109

    Google Scholar 

  25. Stejskal J, Trchová M, Prokeš J, Sapurina I. Brominated polyaniline. Chem Mater, 2001, 13: 4083–4086

    Article  CAS  Google Scholar 

  26. Roy BC, Gupta MD, Bhoumik L, Ray JK. Spectroscopic investigation of water-soluble polyaniline copolymers. Synth Met, 2002, 130: 27–33

    Article  CAS  Google Scholar 

  27. Geng Y, Li J, Jing X, Wang FS. Interaction of N-methylpyrrolidone with doped polyaniline. Synth Met, 1997, 84: 97–98

    Article  CAS  Google Scholar 

  28. Kilmartin PA, Wright GA. Photoelectrochemistry and spectroscopy of substituted polyanilines. Synth Met, 1999, 104: 145–156

    Article  CAS  Google Scholar 

  29. Sauzedde F, Elawassari A, Pichot C. Hydrophilic magnetic polymer latexes l. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Coll Polym Sci, 1999, 277: 846–855

    CAS  Google Scholar 

  30. Fahlman M, Jasty S, Epstein AJ. Corrosion protection of iron/steel by emeraldine base polyaniline: An X-ray photoelectronspectroscopy study. Synth Met, 1997, 85: 1323–1326

    Article  CAS  Google Scholar 

  31. Xu P, Han X, Jiang JJ, Wang XH, Li XD, Wen AH. Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites. J Phys Chem C, 2007, 111: 12603–12608

    Article  CAS  Google Scholar 

  32. Xu P, Han X, Wang C, Zhou DH, Lu ZS, Wen AH, Wang XH, Zhang B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J Phys Chem B, 2008, 112: 10443–10448

    Article  CAS  Google Scholar 

  33. Kwon HJ, Shin JY, Oh JH. The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J Appl Phys, 1994, 75: 6109–6111

    Article  CAS  Google Scholar 

  34. Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys Rev Lett, 1987, 59: 1464–1467

    Article  CAS  Google Scholar 

  35. Zuo F, Angelopoulos M, MacDiarmid AG, Epstein AJ. The a.c. conductivity of emeraldine polymer. Phys Rev B, 1989, 39: 3570–3578

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiangChao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Xu, Q., Li, L. et al. A novel microwave absorber — BaAl2Fe10O19/poly(m-toluidine) composite: Preparation and electromagnetic properties. Sci. China Chem. 55, 1220–1227 (2012). https://doi.org/10.1007/s11426-012-4520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4520-2

Keywords

Navigation