Skip to main content
Log in

Promotion of microvasculature formation in alginate composite hydrogels by an immobilized peptide GYIGSRG

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The ability to create artificial thick tissues is a major tissue engineering problem, requiring the formation of a suitable vascular supply. In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel. GYIGSRG (NH2-Gly-Tyr-Ile-Gly-Ser-Arg-Gly-COOH, GG) has been conjugated to sodium alginate (ALG) to synthesize a biological active biomaterial ALG-GG. The product was characterized by 1H NMR, FT-IR and elemental analysis. A series of CaCO3/ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-δ-lactone/calcium carbonate (GDL/CaCO3) in different molar ratios. The mechanical strength and swelling ratio of the composite hydrogels were studied. The results revealed that both of them can be regulated under different preparation conditions. Then, CaCO3/ALG-GG composite hydrogel was implanted in vivo to study the ability to induce angiogenesis. The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group, and it may be valuable in the development of thick tissue engineering scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kong HJ, Kim ES, Huang YC, Mooney DJ. Design of biodegradable hydrogel for the local and sustained delivery of angiogenic plasmid DNA. Pharm Res, 2008, 25: 1230–1238

    Article  CAS  Google Scholar 

  2. Oberpenning F, Meng J, Yoo JJ Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol, 1999, 17: 149–155

    Article  CAS  Google Scholar 

  3. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367: 1241–1246

    Article  Google Scholar 

  4. Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol, 2005, 23: 821–823

    Article  CAS  Google Scholar 

  5. Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. J Biomater Sci Polym Ed, 2004, 15: 701–726

    Article  CAS  Google Scholar 

  6. Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A, 2008, 14: 1775–1785

    Article  CAS  Google Scholar 

  7. Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Sci Mater Med, 2006, 17: 1393–1401

    Article  CAS  Google Scholar 

  8. Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials, 2009, 30: 751–756

    Article  CAS  Google Scholar 

  9. Saik JE, Gould DJ, Keswani AH, Dickinson ME, West JL. Biomimetic hydrogels with immobilized ephrina1 for therapeutic angiogenesis. Biomacromolecules, 2011, 12: 2715–2722

    Article  CAS  Google Scholar 

  10. Koch S, Yao C, Grieb G, Prevel P, Noah EM, Steffens GCM. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med, 2006, 17: 735–741

    Article  CAS  Google Scholar 

  11. Moya ML, Cheng M-H, Huang J-J, Francis-Sedlak ME, Kao S, Opara EC, Brey EM. The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials, 2010, 31: 2816–2826

    Article  CAS  Google Scholar 

  12. Jun HW, West JL. Modification of polyurethaneurea with PEG and YIGSR peptide to enhance endothelialization without platelet adhesion. J Biomed Mater Res Part B, 2005, 72: 131–139

    Article  Google Scholar 

  13. Meinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbell JA, Deutsch M, Zilla P. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng, 2005, 11: 887–895

    Article  CAS  Google Scholar 

  14. Fittkau MH, Zilla P, Bezuidenhout D, Lutolf MP, Human P, Hubbell JA, Davies N. The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials, 2004, 26: 167–174

    Article  Google Scholar 

  15. Monteiro GA, Fernandes AV, Sundararaghavan HG, Shreiber DI. Positively and negatively modulating cell adhesion to type I collagen via peptide grafting. Tissue Eng Part A, 2009, 17: 1663–1673

    Article  Google Scholar 

  16. Kouvroukoglou S, Dee KC, Bizios R, McIntire LV, Zygourakis K. Endothelial cell migration on surfaces modified with immobilized adhesive peptides. Biomaterials, 2000, 21: 1725–1733

    Article  CAS  Google Scholar 

  17. Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin αϖβ 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol, 1991, 114: 1089–1100

    Article  CAS  Google Scholar 

  18. Dee KC, Andersen TT, Bizios R. Cell function on substrates containing immobilized bioactive peptides. Mater Res Soc Symp Proc, 1994, 331: 115–119

    Article  CAS  Google Scholar 

  19. Wang C, Liu H, Gao Q, Liu X, Tong Z. Alginate-calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths. Carbohydr Polym, 2008, 71: 476–480

    Article  CAS  Google Scholar 

  20. Zhao M, Li L, Zhou C, Lu L. Preparation and characterization of calcium alginate hydrogels as injectable cartilage scaffolds. J Func Mater, 2010, 41: 1353–1356

    Google Scholar 

  21. Wang JX, Zhao X, Yu GL, Li GS, Hao C. Analysis of uronic acid compositions in marine brown algae polysaccharides by precolumn derivatization high performance liquid chromatography. Fenxi Huaxue, 2009, 37: 648–652

    CAS  Google Scholar 

  22. Davidovich-Pinhas M, Bianco-Peled H. A quantitative analysis of alginate swelling. Carbohydr Polym, 2010, 79: 1020–1027

    Article  CAS  Google Scholar 

  23. Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R, Wang J, Lin K, Zhang J, Huang X. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: A quantitative study. Tissue Eng Part A, 2010, 16: 3791–3803

    Article  CAS  Google Scholar 

  24. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997, 18: 583–590

    Article  CAS  Google Scholar 

  25. Miyagi Y, Chiu LLY, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 2011, 32: 1280–1290

    Article  CAS  Google Scholar 

  26. Loebsack A, Greene K, Wyatt S, Culberson, C, Austin C, Beiler R, Roland W, Eiselt P, Rowley J, Burg K, Mooney D, Holder W, Halberstadt C. In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J Biomed Mater, 2001, 57: 575–581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Zhi Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Wang, W., Chen, Z. et al. Promotion of microvasculature formation in alginate composite hydrogels by an immobilized peptide GYIGSRG. Sci. China Chem. 55, 1781–1787 (2012). https://doi.org/10.1007/s11426-012-4513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4513-1

Keywords

Navigation