Science China Chemistry

, Volume 55, Issue 5, pp 802–807 | Cite as

Tuning periodicity of polymer-decorated carbon nanotubes

  • WenDa Wang
  • Eric D. Laird
  • Bing Li
  • LingYu Li
  • Christopher Y. Li
Articles Special Issue · In Honor of the 80th Birthday of Professor WANG Fosong


Carbon nanotube (CNT) is one of the most extensively investigated nanomaterials. Patterning soft matter such as liquid crystals and polymers on CNTs could potentially enable various applications for CNTs. We have demonstrated that controlled polymer crystallization using CNTs as the 1D nucleation sites can lead to periodically functionalized CNTs. Here we show that selected crystalline block copolymers can be periodically decorated along CNTs. This facile technique opens a gateway to periodic patterning on 1-D nanomaterials.


polymer crystallization carbon nanotube block copolymers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dresselhaus MS, Dresselhaus G, Avouris P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Berlin: Springer, 2001CrossRefGoogle Scholar
  2. 2.
    Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science, 2002, 297: 787–792CrossRefGoogle Scholar
  3. 3.
    Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed, 2001, 40: 1721–1725CrossRefGoogle Scholar
  4. 4.
    Czerw R, Guo Z, Ajayan PM, Sun YP, Carroll DL. Organization of polymers onto carbon nanotubes: A route to nanoscale assembly. Nano Lett, 2001, 1: 423–427CrossRefGoogle Scholar
  5. 5.
    Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett, 2006, 6: 159–164CrossRefGoogle Scholar
  6. 6.
    Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 2003, 302: 1545–1548CrossRefGoogle Scholar
  7. 7.
    Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science, 2003, 300: 775–778CrossRefGoogle Scholar
  8. 8.
    Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 2005, 46: 439–444CrossRefGoogle Scholar
  9. 9.
    Grady BP, Pompeo F, Shambaugh RL, Resasco DE. Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B, 2002, 106: 5852–5858CrossRefGoogle Scholar
  10. 10.
    Kelarakis A, Yoon KW, Sics I, Somani RH, Hsiao BS, Chu B. Uniaxial deformation of an elastomer nanocomposite containing modified carbon nanofibers by in situ synchrotron X-ray diffraction. Polymer, 2005, 46: 5103–5117CrossRefGoogle Scholar
  11. 11.
    Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD. Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J Polym Sci Pol Phys, 2003, 41: 520–527CrossRefGoogle Scholar
  12. 12.
    Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer, 2003, 44: 2373–2377CrossRefGoogle Scholar
  13. 13.
    Haggenmueller R, Zhou W, Fischer JE, Winey KI. Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J Nanosci Nanotechnol, 2003, 3: 105–110CrossRefGoogle Scholar
  14. 14.
    Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater, 1999, 11: 937–941CrossRefGoogle Scholar
  15. 15.
    Ge JJ, Hou HQ. Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: Electrospun composite nanofiber sheets. J Am Chem Soc, 2004, 126: 15754–15761CrossRefGoogle Scholar
  16. 16.
    Ye HH, Lam H, Titchenal N, Gogotsi Y, Ko F. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers. Appl Phys Lett, 2004, 85: 1775–1777CrossRefGoogle Scholar
  17. 17.
    Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C, Willis P. Electrospinning of continuons carbon nanotube-filled nanofiber yarns. Adv Mater, 2003, 15: 1161–1165CrossRefGoogle Scholar
  18. 18.
    Yudin VE, Svetlichnyi VM, Shumakov AN, Letenko DG, Feldman AY, Marom G. The nucleating effect of carbon nanotubes on crystallinity in R-BAPB-type thermoplastic polyimide. Macromol Rapid Commun, 2005, 26: 885–888CrossRefGoogle Scholar
  19. 19.
    Ryan KP, Lipson SM, Drury A, Cadek M, Ruether M, O’Flaherty SM, Barron V, McCarthy B, Byrne HJ, Blau WJ, Coleman JN. Carbon-nanotube nucleated crystallinity in a conjugated polymer based composite. Chem Phys Lett, 2004, 391: 329–333CrossRefGoogle Scholar
  20. 20.
    Koerner H, Liu WD, Alexander M, Mirau P, Dowty H, Vaia RA. Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer, 2005, 46: 4405–4420CrossRefGoogle Scholar
  21. 21.
    Cho JW, Kim JW, Jung YC, Goo NS. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun, 2005, 26: 412–416CrossRefGoogle Scholar
  22. 22.
    Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater, 2004, 3: 115–120CrossRefGoogle Scholar
  23. 23.
    Li CY. Polymer single crystal meets nanoparticles. J Poly Sci Poly Phys, 2009, 47: 2436–2440CrossRefGoogle Scholar
  24. 24.
    Li B, Li CY. Immobilizing Au nanoparticles with polymer single crystals, patterning and asymmetric functionalization. J Am Chem Soc, 2007, 129: 12–13CrossRefGoogle Scholar
  25. 25.
    Li B, Ni C, Li CY. Poly(ethylene oxide) single crystals as templates for Au nanoparticle patterning and asymmetrical functionalization. Macromolecules, 2008, 41: 149–155CrossRefGoogle Scholar
  26. 26.
    Wang BB, Li B, Zhao B, Li CY. Amphiphilic Janus gold nanoparticles via combining “solid-state grafting-to” and “grafting-from” methods. J Am Chem Soc, 2008, 130: 11594–11595CrossRefGoogle Scholar
  27. 27.
    Li B, Wang BB, Ferrier RCM, Li CY. Programmable nanoparticle assembly via polymer single crystals. Macromolecules, 2009, 42: 9394–9399CrossRefGoogle Scholar
  28. 28.
    Wang B, Dong B, Li B, Zhao B, Li CY. Janus gold nanoparticle with bicompartment polymer brushes templated by polymer single crystals. Polymer, 2010, 51: 4814–4822CrossRefGoogle Scholar
  29. 29.
    Wang BB, Li B, Ferrier RCM, Li CY. Polymer single crystal templated janus nanoparticles. Macromol Rapid Commun, 2010, 31: 169–175Google Scholar
  30. 30.
    Wang BB, Li B, Dong B, Zhao B, Li CY. Homo- and hetero-particle clusters formed by janus nanoparticles with bicompartment polymer brushes. Macromolecules, 2010, 43: 9234–9238CrossRefGoogle Scholar
  31. 31.
    Wang J, Li CY, Jin S, Weng X, Van Horn RM, Graham MJ, Zhang WB, Jeong KU, Harris FW, Lotz B, Cheng SZD. Helical crystal assemblies in nonracemic chiral liquid crystalline polymers: Where chemistry and physics meet. Ind Eng Chem Res, 2010, 49: 11936–11947CrossRefGoogle Scholar
  32. 32.
    Dong B Li B, Li CY. Janus nanoparticle dimers and chains via polymer single crystals. J Mater Chem, 2011, 21: 13155–13158CrossRefGoogle Scholar
  33. 33.
    Li CY, Li L, Cai W, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: Periodically functionalized carbon nanotubes. Adv Mater, 2005, 17: 1198–1202CrossRefGoogle Scholar
  34. 34.
    Li L, Li CY, Ni C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc, 2006, 128: 1692–1699CrossRefGoogle Scholar
  35. 35.
    Li L, Yang Y, Yang G, Chen X, Hsiao BS, Chu B, Spanier JE, Li CY. Patterning polyethylene oligomers on carbon nanotubes using physical vapor deposition. Nano Lett, 2006, 6: 1007–1012CrossRefGoogle Scholar
  36. 36.
    Li L, Li CY, Ni C, Rong LX, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer, 2007, 48: 3452–3460CrossRefGoogle Scholar
  37. 37.
    Li L, Li B, Hood MA, Li CY. Carbon nanotube induced polymer crystallization: The formation of nanohybrid shish-kebabs. Polymer, 2009, 50: 953–965CrossRefGoogle Scholar
  38. 38.
    Li L, Wang W, Laird ED, Li CY, Defaux M, Ivanov DA. Polyethylene/ carbon nanotube nano hybrid shish-kebab obtained by solvent evaporation and thin-film crystallization. Polymer, 2011, 52: 3633–3638CrossRefGoogle Scholar
  39. 39.
    Li B, Li L, Wang BB, Li CY. Alternating patterns on single-walled carbon nanotubes. Nat Nanotech, 2009, 4: 358–362CrossRefGoogle Scholar
  40. 40.
    Li L, Li B, Yang GL, Li CY. Polymer decoration on carbon nanotubes via physical vapor deposition. Langmuir, 2007, 23: 8522–8525CrossRefGoogle Scholar
  41. 41.
    Wang BB, Li B, Xiong J, Li CY. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules, 2008, 41: 9516–9521CrossRefGoogle Scholar
  42. 42.
    Chen X, Dong B, Wang BB, Shah R, Li CY. Crystalline block copolymer decorated, hierarchically ordered polymer nanofibers. Macromolecules, 2010, 43: 9918–9927CrossRefGoogle Scholar
  43. 43.
    Hamley IW. The Physics of Block Copolymers. New York: Oxford Univerisity Press, 1998Google Scholar
  44. 44.
    Bates FS, Fredrickson GH. Block copolymer thermodynamics-Theory and experiment. Annu Rev Phys Chem, 1990, 41: 525–557CrossRefGoogle Scholar
  45. 45.
    Bahun GJ, Wang C, Adronov A. Solubilizing single-walled carbon nanotubes with pyrene-functionalized block copolymers. J Polym Sci Pol Chem, 2006, 44: 1941–1951CrossRefGoogle Scholar
  46. 46.
    Cotiuga I, Picchioni F, Agarwal US, Wouters D, Loos J, Lemstra PJ. Block-copolymer-assisted solubilization of carbon nanotubes and exfoliation monitoring through viscosity. Macromol Rapid Commun, 2006, 27: 1073–1078CrossRefGoogle Scholar
  47. 47.
    Kang YJ, Taton TA. Micelle-encapsulated carbon nanotubes: A route to nanotube composites. J Am Chem Soc, 2003, 125: 5650–5651CrossRefGoogle Scholar
  48. 48.
    Kitano H, Tachimoto K, Nakaji-Hirabayashi T, Shinohara H. Wrapping of single-walled carbon nanotubes with A-B-A block telomers. Macromol Chem Phys, 2004, 205: 2064–2071CrossRefGoogle Scholar
  49. 49.
    Shin HI, Min BG, Jeong WY, Park CM. Amphiphilic block copolymer micelles: New Dispersant for single wall carbon nanotubes. Macromol Rapid Commun, 2005, 26: 1451–1457CrossRefGoogle Scholar
  50. 50.
    Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R. Generic approach for dispersing single-walled carbon nanotubes: The strength of a weak interaction. Langmuir, 2004, 20: 6085–6088CrossRefGoogle Scholar
  51. 51.
    Pennnings AJ, Kiel AM. Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution. Colloid Polym Sci, 1965, 205: 160–161Google Scholar
  52. 52.
    Pennnings AJ, Van der Mark, JMAA, Kiel AM. Hydrodynamically induced crystallization of polymers from solution III. Morphology. Colloid Polym Sci, 1970, 237: 336–358Google Scholar
  53. 53.
    Bates FS, Fredrickson GH. Block copolymers—designer soft materials. Phys Today, 1999, 52: 32–38CrossRefGoogle Scholar
  54. 54.
    Hawker CJ, Russell TP. Block copolymer lithography: merging “bottom-up” with “top-down” processes. MRS Bull, 2005, 30: 952–966CrossRefGoogle Scholar
  55. 55.
    Cheng JY, Ross CA, Smith HI, Thomas EL. Templated self-assembly of block copolymers: top-down helps bottom-up. Adv Mater, 2006, 18: 2505–2521CrossRefGoogle Scholar
  56. 56.
    Hamley IW. Block Copolymers in Solution Fundamentals and Applications. Wiley, 2005Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • WenDa Wang
    • 1
  • Eric D. Laird
    • 1
  • Bing Li
    • 1
  • LingYu Li
    • 1
  • Christopher Y. Li
    • 1
  1. 1.A. J. Drexel Nanotechnology Institute and Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations