Skip to main content
Log in

The reductive mechanism of nitrobenzene catalyzed by nine charcoals in sulfides solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Due to the different sources of charcoals, there are significant differences in their properties. In order to study the catalytic effect of different charcoals to nitrobenzene (NB), we selected nine charcoal-sources to prepare nine charcoals with different properties. The experiments showed that NB could be rapidly reduced by sulfides in the presence of all charcoals. The surface area normalized reduction rate constants of NB increased with H/C and (O+N)/C ratio of charcoals increasing. The difference of catalytic effect for nine charcoals was mainly due to their different species and content of surface functional groups and original organic matter. Based on the theoretical calculation and experimental results, the reaction mechanism of NB catalyzed by charcoal in sulfides solution was analyzed. Some active surface functional groups and original organic matter of charcoals were regarded as the active sites and played an important role in catalyzing the reduction of NB by accelerating the transfer of electrons from sulfides to NB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg ED. Black Carbon In The Environment: Properties And Distribution. New York: John Wiley & Sons, 1985

    Google Scholar 

  2. Braida WJ, Pignatello JJ, Lu YF, Ravikovitch PI, Neimark AV, Xing BS. Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol, 2003, 37(2): 409–417

    Article  CAS  Google Scholar 

  3. Chingombe P, Saha B, Wakeman RJ. Sorption of atrazine on conventional and surface modified activated carbons. J Colloid Interface Sci, 2006, 302(2): 408–416

    Article  CAS  Google Scholar 

  4. Tan IAW, Ahmad AL, Hameed BH. Preparation of activated carbon from coconut husk: Optimization study on removal of 2, 4, 6-trichlorophenol using response surface methodology. J Hazard Mater, 2008, 153(1–2): 709–717

    Article  CAS  Google Scholar 

  5. Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, Noort PMV. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol, 2005, 39(18): 6881–6895

    Article  CAS  Google Scholar 

  6. Zhu DQ, Kwon S, Plgnatello JJ. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ Sci Technol, 2005, 39(11): 3990–3998

    Article  CAS  Google Scholar 

  7. Zhu DQ, Pignatello JJ. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol, 2005, 39(7): 2033–2041

    Article  CAS  Google Scholar 

  8. Sander M, Pignatello JJ. Characterization of charcoal adsorption sites for aromatic compounds: Insights drawn from single-solute and bi-solute competitive experiments. Environ Sci Technol, 2005, 39(6): 1606–1615

    Article  CAS  Google Scholar 

  9. Cornelissen G, Haftka J. Parsons, J, Gustafsson Ö. Sorption to black carbon of organic compounds with varying polarity and planarity. Environ Sci Technol, 2005, 39(10): 3688–3694

    Article  CAS  Google Scholar 

  10. Yang Y, Hofmann T, Pies C, Grathwohl P. Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil. Environ Pollut, 2008, 156(3): 1357–1363

    Article  CAS  Google Scholar 

  11. Liu P, Zhu DQ, Zhang H, Shi X, Sun H, Dang F. Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China. Environ Pollut, 2008, 156(3): 1053–1060

    Article  CAS  Google Scholar 

  12. Lohmann R, Macfarlane JK, Gschwend PM. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ Sci Technol, 2005, 39(1): 141–148

    Article  CAS  Google Scholar 

  13. Cornelissen G, Elmquist M, Groth I, Gustafsson Ö. Effect of sorbate planarity on environmental black carbon sorption. Environ Sci Technol, 2004, 38(13): 3574–3580

    Article  CAS  Google Scholar 

  14. Zhou Zl, Shi DJ, Qiu YP, Sheng D. Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environ Pollut, 2010, 158(1): 201–206

    Article  CAS  Google Scholar 

  15. Zimmerman JR, Ghosh U, Millward RN. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments physicochemical tests. Environ Sci Technol, 2004, 38(20): 5458–5464

    Article  CAS  Google Scholar 

  16. Wu Q, Blume HP, Rexilius L, FÖlschow M, Schleuss U. Sorption of atrazine, 2,4-D, nitrobenzene and pentachlorophenol by urban and industrial wastes. Eur J Soil Sci, 2000, 51(2): 335–344

    Article  CAS  Google Scholar 

  17. Serp P, Figueiredo JL. Carbon Materials for Catalysis. New Jersey: John Wiley & Sons, 2009

    Google Scholar 

  18. Dunnivant FM, Schwarzenbach RP, Macalady DL. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ Sci Technol, 1992, 26(11): 2133–2141

    Article  CAS  Google Scholar 

  19. Oh SY, Chui PC. Graphite- and soot-mediated reduction of 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Sci Technol, 2009, 43(18): 6983–6988

    Article  CAS  Google Scholar 

  20. Kemper JM, Ammar E, Mitch WA. Abiotic degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in the presence of hydrogen sulfide and black carbon. Environ Sci Technol, 2008, 42(6): 2118–2123

    Article  CAS  Google Scholar 

  21. Xu WQ, Dana KE, Mitch WA. Black carbon-mediated destruction of nitroglycerin and RDX by hydrogen sulfide. Environ Sci Technol, 2010, 44(16): 6409–6415

    Article  CAS  Google Scholar 

  22. Yu XD, Gong WW, Liu XH, Shi L, Han, X, Bao HY. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides. J Hazard Mater, 2011, 198(30): 340–346

    Article  CAS  Google Scholar 

  23. Roberts AL, Sanborn PN, Gschwend PM. Nucleophilic substitution reactions of dihalomethanes with hydrogen sulfide species. Environ Sci Technol, 1992, 26(11): 2263–2274

    Article  CAS  Google Scholar 

  24. Lippa KA, Roberts AL. Nucleophilic aromatic substitution reactions of chloroazines with bisulfide (HS) and polysulfides(Sn 2−). Environ Sci Technol, 2002, 36(9): 2008–2018

    Article  CAS  Google Scholar 

  25. Chun Y, Sheng GY, Chiou C, Xing BS. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol, 2004, 38(17): 4649–4655

    Article  CAS  Google Scholar 

  26. Chen BL, Zhou DD, Zhu LZ. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperature. Environ Sci Technol, 2008, 42(14): 5137–5143

    Article  CAS  Google Scholar 

  27. Chen BL, Johnson EJ, Chefetz B, Zhu LZ, Xing BS. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility. Environ Sci Technol, 2005, 39(16): 6138–6146

    Article  CAS  Google Scholar 

  28. Bustin RM, Guo Y. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. Int J Coal Geol, 1999, 38(3–4): 237–260

    Article  CAS  Google Scholar 

  29. Castilla CM, Marín FC, Pérez CP, Ramón, MVL. Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon, 2001, 39(6): 869–875

    Article  Google Scholar 

  30. Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today, 2010, 150(1–2): 2–7

    Article  CAS  Google Scholar 

  31. Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan VK, Beaulieu C, Hawari J. Physico-chemical measurements of CL-20 for environmental applications: Comparison with RDX and HMX. J Chromatogr A, 2004, 1025(1): 125–132

    Article  CAS  Google Scholar 

  32. Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental Organic Chemistry, 2nd ed. New Jersey: John Wiley & Sons, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XinHui Liu or HuaYing Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Gong, W., Liu, X. et al. The reductive mechanism of nitrobenzene catalyzed by nine charcoals in sulfides solution. Sci. China Chem. 55, 2217–2223 (2012). https://doi.org/10.1007/s11426-011-4489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4489-2

Keywords

Navigation