Skip to main content
Log in

Tuning the optical properties of BODIPY dye through Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Borondipyrromethenes (BODIPY) are a class of fluorescent dyes whose fluorescence quantum yields are generally high and independent of the solvent. In this paper, we report the synthesis of a new type of BODIPY compound that carries an azido group on the 3-position of the pyrrole core. The azido group quenches the fluorescence of the dye due to its weak electron-donating effect. The fluorescence of the BODIPY dye can be switched on after reacting with alkynes via a Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. We further demonstrate that this azido-BODIPY compound can be used in the cell imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed, 2002, 41: 2596–2599

    Article  CAS  Google Scholar 

  2. Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1xxx2xxx3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem, 2002, 67: 3057–3064

    Article  CAS  Google Scholar 

  3. Sivakumar K, Xie F, Cash BM, Long S, Barnhill HN, Wang Q. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett, 2004, 6: 4603–4606

    Article  CAS  Google Scholar 

  4. Zhou Z, Fahrni CJ. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: Modulation of the fluorescence emission via (3)(n,pi*)-(1)(pi,pi*) inversion. J Am Chem Soc, 2004, 126: 8862–8863

    Article  CAS  Google Scholar 

  5. Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong CH. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Nat Acad Sci USA, 2006, 103: 12371–12376

    Article  CAS  Google Scholar 

  6. Xie F, Sivakumar K, Zeng QB, Bruckman MA, Hodges B, Wang Q. A fluorogenic “click” reaction of azidoanthracene derivatives. Tetrahedron, 2008, 64: 2906–2914

    Article  CAS  Google Scholar 

  7. Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed, 2006, 45: 7364–7367

    Article  CAS  Google Scholar 

  8. Le Droumaguet C, Wang C, Wang Q. Fluorogenic click reaction. Chem Soc Rev, 2010, 39: 1233–1239

    Article  Google Scholar 

  9. Bergstrom F, Mikhalyov I, Hagglof P, Wortmann R, Ny T, Johansson LBA. Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J Am Chem Soc, 2002, 124: 196–204

    Article  Google Scholar 

  10. Trieflinger C, Rurack K, Daub M. “Turn ON/OFF your LOV light”: Boron-dipyrromethene-flavin dyads as biomimetic switches derived from the LOV domain. Angew Chem Int Ed, 2005, 44: 2288–2291

    Article  CAS  Google Scholar 

  11. Zhao WL, Carreira EM. Conformationally restricted aza-bodipy: A highly fluorescent, stable, near-infrared-absorbing dye. Angew Chem Int Ed, 2005, 44: 1677–1679

    Article  CAS  Google Scholar 

  12. Harriman A, Izzet G, Ziessel R. Rapid energy transfer in cascade-type bodipy dyes. J Am Chem Soc, 2006, 128: 10868–10875

    Article  CAS  Google Scholar 

  13. Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew Chem Int Ed, 2006, 45: 4562–4588

    Article  CAS  Google Scholar 

  14. Liras M, Prieto JB, Pintado-Sierra M, Arbeloa FL, Garcia-Moreno I, Costela A, Infantes L, Sastre R, Amat-Guerri F. Synthesis, photophysical properties, and laser behavior of 3-amino and 3-acetamido BODIPY dyes. Org Lett, 2007, 9: 4183–4186

    Article  CAS  Google Scholar 

  15. Riddle JA, Jiang X, Huffman J, Lee D. Signal-amplifying resonance energy transfer: A dynamic multichromophore array for allosteric switching. Angew Chem Int Ed, 2007, 46: 7019–7022

    Article  CAS  Google Scholar 

  16. Nagai A, Miyake J, Kokado K, Nagata Y, Chujo Y. Highly luminescent BODIPY-based organoboron polymer exhibiting supramolecular self-assemble structure. J Am Chem Soc, 2008, 130: 15276–15278

    Article  CAS  Google Scholar 

  17. Kaloudi-Chantzea A, Karakostas N, Raptopoulou CP, Psycharis V, Saridakis E, Griebel J, Hermann R, Pistolis G. Coordination-driven self assembly of a brilliantly fluorescent rhomboid cavitand composed of bodipy-dye subunits. J Am Chem Soc, 2010, 132: 16327–16329

    Article  CAS  Google Scholar 

  18. Nepomnyashchii AB, Cho S, Rossky PJ, Bard AJ. Dependence of electrochemical and electrogenerated chemiluminescence properties on the structure of bodipy dyes unusually large separation between sequential electron transfers. J Am Chem Soc, 2010, 132: 17550–17559

    Article  CAS  Google Scholar 

  19. Nepomnyashchii AB, Broring M, Ahrens J, Bard AJ. Synthesis, photophysical, electrochemical, and electrogenerated chemiluminescence studiesMultiple sequential electron transfers in BODIPY monomers, dimers, trimers, and polymer. J Am Chem Soc, 2011, 133: 8633–45

    Article  CAS  Google Scholar 

  20. Whited MT, Djurovich PI, Roberts ST, Durrell AC, Schlenker CW, Bradforth SE, Thompson ME. Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex. J Am Chem Soc, 2011, 133: 88–96

    Article  CAS  Google Scholar 

  21. Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T. Highly efficient and photostable photosensitizer based on BODIPY chromophore. J Am Chem Soc, 2005, 127: 12162–12163

    Article  CAS  Google Scholar 

  22. Hagihara S, Miyazaki A, Matsuo I, Tatami A, Suzuki T, Ito Y. Fluorescently labeled inhibitor for profiling cytoplasmic peptide:N-glycanase. Glycobiology, 2007, 17: 1070–1076

    Article  CAS  Google Scholar 

  23. Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Buschel M, Tolmachev AI, Daub J, Rurack K. On the development of sensor molecules that display Fe-III-amplified fluorescence. J Am Chem Soc, 2005, 127: 13522–13529

    Article  CAS  Google Scholar 

  24. Qin WW, Baruah M, Stefan A, Van der Ameraer M, Boens N. Photophysical properties of BODIPY-derived hydroxyaryl fluorescent pH probes in solution. Chem Physchem, 2005, 6: 2343–2351

    Article  CAS  Google Scholar 

  25. Peng XJ, Du JJ, Fan JL, Wang JY, Wu YK, Zhao JZ, Sun SG, Xu T. A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc, 2007, 129: 1500–1501

    Article  CAS  Google Scholar 

  26. Lee JS, Kang NY, Kim YK, Samanta A, Feng SH, Kim HK, Vendrell M, Park JH, Chang YT. Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J Am Chem Soc, 2009, 131: 10077–10082

    Article  CAS  Google Scholar 

  27. Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R. Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed, 2010, 49: 2869–2872

    CAS  Google Scholar 

  28. Nierth A, Kobitski AY, Nienhaus GU, Jaschke A. Anthracene-BODIPY dyads as fluorescent sensors for biocatalytic diels-alder reactions. J Am Chem Soc, 2010, 132: 2646–2654

    Article  CAS  Google Scholar 

  29. Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew Chem Int Ed, 2008, 47: 1184–1201

    Article  CAS  Google Scholar 

  30. Goze C, Ulrich G, Charbonnière L, Cesario M, Prangé T, Ziessel R. Cation sensors based on terpyridine-functionalized boradiazaindacene. Chem Eur J, 2003, 9: 3748–3755

    Article  CAS  Google Scholar 

  31. Qin WW, Rohand T, Baruah M, Stefan A, Van der Auweraer M, Dehaen W, Boens N. Solvent-dependent photophysical properties of borondipyrromethene dyes in solution. Chem Phys Lett, 2006, 420: 562–568

    Article  CAS  Google Scholar 

  32. Rohand T, Baruah M, Qin WW, Boens N, Dehaen W. Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. Chem Commun, 2006, 266–268

  33. Rohand T, Qin WW, Boens N, Dehaen W. Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum. Eur J Org Chem, 2006, 4658–4663

  34. Rurack K, Kollmannsberger M, Daub J. Molecular switching in the near infrared (NIR) with a functionalized boron-Dipyrromethene dye. Angew Chem Int Ed, 2001, 40: 385–387

    Article  CAS  Google Scholar 

  35. Basaric N, Baruah M, Qin WW, Metten B, Smet M, Dehaen W, Boens N. Synthesis and spectroscopic characterisation of BODIPY (R) based fluorescent off-on indicators with low affinity for calcium. Org Biomol Chem, 2005, 3: 2755–2761

    Article  CAS  Google Scholar 

  36. Qi X, Jun EJ, Xu L, Kim SJ, Hong JSJ, Yoon YJ, Yoon JY. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: Cooperative selectivity enhancement toward Cu2+. J Org Chem, 2006, 71: 2881–2884

    Article  CAS  Google Scholar 

  37. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc, 2006, 128: 10–11

    Article  CAS  Google Scholar 

  38. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc, 2005, 127: 16652–16659

    Article  CAS  Google Scholar 

  39. Yuan MJ, Li YL, Li JB, Li CH, Liu XF, Lv J, Xu JL, Liu HB, Wang S, Zhu D. A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule. Org Lett, 2007, 9: 2313–2316

    Article  CAS  Google Scholar 

  40. Bozdemir OA, Guliyev R, Buyukcakir O, Selcuk S, Kolemen S, Gulseren G, Nalbantoglu T, Boyaci H, Akkaya EU. Selective manipulation of ict and pet processes in styryl-bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions. J Am Chem Soc, 2010, 132: 8029–8036

    Article  CAS  Google Scholar 

  41. Littler BJ, Miller MA, Hung CH, Wagner RW, O'shea DF, Boyle PD, Lindsey JS. Refined synthesis of 5-substituted dipyrromethanes. J Org Chem, 1999, 64: 1391–1396

    Article  CAS  Google Scholar 

  42. Cornforth JW, Firth ME. Identification of two chromogens in the Elson-Morgan determination of hexosamines. A new synthesis of 3-methylpyrrole. Structure of the “pyrrolene-phthalides”. J Chem Soc, 1958, 1091–1099

  43. Baruah M, Qin WW, Basaric N, De Borggraeve WM, Boens N. BODIPY-based hydroxyaryl derivatives as fluorescent pH probes. J Org Chem, 2005, 70: 4152–4157

    Article  CAS  Google Scholar 

  44. De P, Gondi SR, Sumerlin BS. Folate-conjugated thermoresponsive block copolymers: Highly efficient conjugation and solution self-assembly. Biomacromolecules, 2008, 9: 1064–1070

    Article  CAS  Google Scholar 

  45. Saeed AO, Magnusson JP, Moradi E, Soliman M, Wang W, Stolnik S, Thurecht KJ, Howdle SM, Alexander C. Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery. Bioconjugate Chem, 2011, 22: 156–168

    Article  CAS  Google Scholar 

  46. Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Delivery Rev, 2004, 56: 1127–1141

    Article  CAS  Google Scholar 

  47. Suthiwangcharoen N, Li T, Li K, Thompson P, You S, Wang Q. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles. Nano Res, 2011, 1–11

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Sun or Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Xie, F., Suthiwangcharoen, N. et al. Tuning the optical properties of BODIPY dye through Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Sci. China Chem. 55, 125–130 (2012). https://doi.org/10.1007/s11426-011-4452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4452-2

Keywords

Navigation