Skip to main content
Log in

Exploring the binding mechanism of thioflavin-T to the β-amyloid peptide by blind docking method

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Using blind dock method, we find that thioflavin-T (ThT) can bind to both monomers and fibrils of the full-length β-amyloid peptide (Aβ1-42) and has a higher binding affinity to the fibrils. It is shown that the hydrophobic interaction between the ligand (ThT) and substrate (Aβ1-42) are stronger than hydrogen bonds. Furthermore, ThT tends to be located near the C-terminus of Aβ monomer through hydrophobic and electrostatic interactions, while it tends to contact the residues Met35 and Gly27 of the fibril surface mainly through hydrophobic interaction. Finally, according to the docking results and ThT fluorescence assay, a kinetic equation is proposed to deduce the aggregation rate coefficient of Aβ1-42.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harper JD, Lieber CM, Lansbury PT. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem Biol, 1997, 4: 951–959

    Article  CAS  Google Scholar 

  2. Kelly JW. Amyloid fibril formation and protein misassembly: A structural quest for insights into amyloid and prion diseases. Structure, 1997, 5: 595–600

    Article  CAS  Google Scholar 

  3. Carrell RW, Gooptu B. Conformational changes and disease — serpins, prions and Alzheimer's. Curr Opin Struct Biol, 1998, 8: 799 809

    Article  Google Scholar 

  4. Naiki H, Higuchi K, Hosokawa M, Takeda T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Biochem, 1989, 177: 244–249

    CAS  Google Scholar 

  5. Naiki H, Higuchi K, Matsushima K, Shimada A, Chen WH, Hosokawa M, Takeda T. Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis: Use of the fluorescent indicator, thioflavine T. Lab Invest, 1990, 62: 768–773

    CAS  Google Scholar 

  6. Vitali IS, Alexander AM, Valery AK. Thioflavin T as a molecular rotor: Fluorescent properties. J Phys Chem B, 2008, 112: 15893–15902

    Article  Google Scholar 

  7. Goers J, Permyakov SE, Permyakov EA, Uversky VN, Fink AL. Conformational prerequisites for alpha-lactalbumin fibrillation. Biochemistry, 2002, 41: 12546–12551

    Article  CAS  Google Scholar 

  8. Kumita JR, Weston CJ, Choo-Smith LP, Woolley GA, Smart OS. Prevention of peptide fibril formation in an aqueous environment by mutation of a single residue to Aib. Biochemistry, 2003, 42: 4492–4498

    Article  CAS  Google Scholar 

  9. Hutter T, Amdursky N, Gepshtein R, Elliott SR, Huppert D. Study of ThT immobilized in porous silicon and the effect of different organic vapors on the fluorescence lifetime. Langmuir, 2011, 27: 7587–94

    Article  CAS  Google Scholar 

  10. Watson AA, Fairlie DP, Craik DJ. Solution structure of methionine-oxidized amyloid beta-peptide (1–40). Biochemistry, 1998, 37: 12700–12706

    Article  CAS  Google Scholar 

  11. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik, D. Solution structure of amyloid beta-peptide (1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? J Biochemistry. 1998, 37: 11064–11077

    Article  CAS  Google Scholar 

  12. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R. 3D structure of Alzheimer's amyloid-β(1–42) fibrils. Proc Natl Acad Sci USA, 2005, 102: 17342–17347

    Article  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr. Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A1, Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  14. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  15. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988, 37: 785–789

    Article  CAS  Google Scholar 

  16. Hess B, Kutzner C, van der Spoel D, Lindahl E. Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput, 2008, 4: 435–447

    Article  CAS  Google Scholar 

  17. Van Gunsteren W, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott W, Tironi I. Biomolecular simulation: The GROMOS96 manual and user guide. vdf Hochschul-verlag AG an der ETH: Zurich, Switzerland, 1996

  18. Berendsen HJC, Postma J, van Gunsteren W, Hermans J. Intermolecular Forces. Reidel: Dordrecht, The Netherlands, 1996

  19. Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D. Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism. Proc Natl Acad Sci USA, 2007, 104: 111–116

    Article  CAS  Google Scholar 

  20. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. A linear constraint solver for molecular simulations. J Comput Chem, 1997, 18: 1463–1472

    Article  CAS  Google Scholar 

  21. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys, 2007, 126: 014101

    Article  Google Scholar 

  22. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81: 1463–1472

    Article  Google Scholar 

  23. Darden T, York D, Pedersen L. Particle mesh Ewald: An N*logN method for Ewald sums in large systems. J Chem Phys, 1993, 98: 10089–10092

    Article  CAS  Google Scholar 

  24. Sanner MF. Python: A programming language for software integration and development. J Mol Graphics Mod, 1999, 17: 57–61

    CAS  Google Scholar 

  25. Yu YP, Lei P, Hu J, Wu WH, Zhao YF, Li YM. Copper-induced cytotoxicity: reactive oxygen species or islet amyloid polypeptide oligomer formation. Chem Commun, 2010, 46: 6909–6911

    Article  CAS  Google Scholar 

  26. Amaro RE, Baron R, McCammon JA. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol, 2007, 22: 693–705

    Article  Google Scholar 

  27. Zhang R, et al. Interprotofilament interactions between Alzheimer's Abeta1-42 peptides in amyloid fibrils revealed by cryo-EM. Proc Natl Acad Sci USA, 2009, 106: 4653–4658

    Article  CAS  Google Scholar 

  28. Miller Y, Mab B, Tsaib CJ, Nussinovb R. Hollow core of Alzheimer's Aβ42 amyloid observed by cryo-EM is relevant at physiological pH. Proc Natl Acad Sci USA, 2010, 107: 14128–14133

    Article  CAS  Google Scholar 

  29. http://www.rose-hulman.edu/~brandt/Fluorescence/Fluorescence_Introduction.pdf

  30. Lomakin A, Teplow DB, Kirschneri DA, Benedek GB. Kinetic theory of fibrillogenesis of amyloid b-protein. Proc Natl Acad Sci USA, 1997, 94: 7942–7947

    Article  CAS  Google Scholar 

  31. Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry, 1993, 32: 4693–4697

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanMei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Chen, Y., Liu, Q. et al. Exploring the binding mechanism of thioflavin-T to the β-amyloid peptide by blind docking method. Sci. China Chem. 55, 112–117 (2012). https://doi.org/10.1007/s11426-011-4451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4451-3

Keywords

Navigation