Skip to main content
Log in

In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Saframycin A (SFM-A), a tetrahydroisoquinoline antibiotic isolated from Streptomyces lavendulae, shows potent anti-proliferation activities against a variety of tumor cell lines, and shares the core structure with ecteinascidin 743 (ET-743), the anticancer drug for soft-tissue sarcoma. Characterization of the SFM-A biosynthetic gene cluster revealed three nonribosomal peptide synthetase genes and a series of genes encoding oxygenases. To investigate the function of sfmO2 gene, encoding a FAD-dependent monooxygenase/hydroxylase, we constructed the gene replacement mutant (sfmO2) strain S. lavendulae TL2007 and the corresponding gene complementation mutant strain S. lavendulae TL2008. A novel compound, SFM-O, was isolated from the sfmO2 replacement mutant strain and its structure was characterized by comparison to the HRMS and NMR spectra of SFM-A. These findings indicated that SfmO2 is responsible for the oxidation of ring A in the biosynthetic pathway of SFM-A, and the new compound SFM-O could be considered as an advanced intermediate in the semisynthesis of ET-743.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai T, Takahashi K, Kubo A. New antibiotics, saframycins A, B, C, D and E. J Antibiot, 1977, 30: 1015–1018

    CAS  Google Scholar 

  2. Arai T, Takahashi K, Ishiguro K, Yazawa K. Increased production of saframycin A and isolation of saframycin S. J Antibiot, 1980, 33: 951–960

    CAS  Google Scholar 

  3. Lown JW, Hanstock CC, Joshua AV, Arai T, Takahashi K. Directed biosynthesis ofnew saframycin derivatives with resting cells of Streptomyces lavendulae. J Antibiot, 1983, 36: 1184–1194

    CAS  Google Scholar 

  4. Mikami Y, Takahashi K, Yazawa K, Arai T, Namikoshi M, Iwasaki S, Okuda S. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J Biol Chem, 1985, 260: 344–348

    CAS  Google Scholar 

  5. Pospiech A, Cluzel B, Bietenhader J, Schupp T. A new Myxococcus xanthus gene cluster for the biosynthesis of the antibiotic saframycin Mx1 encoding a peptide synthetase. Microbiology, 1995, 141: 1793–1803

    Article  CAS  Google Scholar 

  6. Scott JD, Williams RM. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev, 2002, 102: 1669–1730

    Article  CAS  Google Scholar 

  7. Asaoka T, Yazawa K, Mikami Y, Arai T, Takahashi K. A new saframycin, saframycin R. J Antibiot, 1982, 35: 1708–1710

    CAS  Google Scholar 

  8. Irschik H, Trowitzsch KW, Gerth K, Hofle G, Reichenbach H. Saframycin Mx1, a new natural saframycin isolated from a myxobacterium. J Antibiot, 1988, 41: 993–998

    CAS  Google Scholar 

  9. Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Kieffer PA, Sun F, Li LH, Martin DG. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the caribbean tunicate Ecteinascidia turbinate. J Org Chem, 1990, 55: 4512–4515

    Article  CAS  Google Scholar 

  10. Ishiguro K, Sakiyama S, Takahashi K, Arai T. Mode of action of saframycin A, a novel heterocyclic quinone antibiotic. Inhibition of RNA synthesis in vivo and in vitro. Biochemistry, 1978, 17: 2545–2550

    Article  CAS  Google Scholar 

  11. Lown JW, Joshua AV, Lee JS. Molecular mechanisms of binding and single-strand scission of deoxyribonucleic acid by the antitumor antibiotics saframycins A and C. Biochemistry, 1982, 21: 419–428

    Article  CAS  Google Scholar 

  12. Plowright AT, Schaus SE, Myers AG. Transcriptional response pathways in a yeast strain sensitive to saframycin A and a more potent analog: Evidence for a common basis of activity. Chem Biol, 2002, 9: 607–618

    Article  CAS  Google Scholar 

  13. Xing C, LaPorte JR, Barbay JK, Myers AG. Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc Natl Acad Sci USA, 2004, 101: 5862–5866

    Article  CAS  Google Scholar 

  14. Arai T, Takahashi K, Ishiguro K, Mikami Y. Some chemotherapeutic properties of two new antitumor antibiotics, saframycins A and C. Gann, 1980, 71: 790–796

    CAS  Google Scholar 

  15. Cuevas C, Francesch A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep, 2009, 26: 322–337

    Article  CAS  Google Scholar 

  16. Cuevas C, Peŕez M, Martıń MJ, Chicharro JL, Carolina FR, Marıá F, Francesch A, Gallego P, Marıá Z, Calle F, Garcıá J, Polanco C, Ignacio R, Ignacio M. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett, 2000, 2: 2545–2548

    Article  CAS  Google Scholar 

  17. Hopwood DA, Genetic contributions to understanding polyketide synthases. Chem Rev, 1997, 97: 2465–2497

    Article  CAS  Google Scholar 

  18. Epp JK, Huber ML, Turner JR, Goodson T, Schoner BE. Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene, 1989, 85: 293–301

    Article  CAS  Google Scholar 

  19. Gokhale RS, Tsuji SY, Cane DE, Khosla C. Dissecting and exploiting intermodular communication in polyketide synthases. Science, 1999, 284: 482–485

    Article  CAS  Google Scholar 

  20. Xue Q, Ashley G, Hutchinson CR, Santi DV. A multiplasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci USA, 1999, 96: 11740–11745

    Article  CAS  Google Scholar 

  21. Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat biotechnol, 2005, 23: 1171–1176

    Article  CAS  Google Scholar 

  22. Li L, Deng W, Song J, Ding W, Zhao QF, Peng C, Song WW, Tang GL, Liu W. Characterization of the saframycin A gene cluster from S. lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol, 2008, 23: 251–263

    Article  Google Scholar 

  23. Koketsu K, Watanabe K, Suda H, Oguri H, Oikawa H. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms. Nat Chem Biol, 2010, 6: 408–410

    Article  CAS  Google Scholar 

  24. Velasco A, Acebo P, Gomez A, Schleissner C, Rodríguez P, Aparicio T, Conde S, Muñoz R, de la Calle F, Garcia JL, Sánchez-Puelles JM. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: Designing new cytotoxic compounds. Mol Microbiol, 2005, 56: 144–154

    Article  CAS  Google Scholar 

  25. Fu CY, Tang MC, Peng C, Li L, He YL, Liu W, Tang GL. Biosynthesis of 3-hydroxy-5-methyl-o-methyltyrosine in the saframycin/safracin biosynthetic pathway. J Microbiol Biotechnol, 2009, 19: 439–446

    Article  CAS  Google Scholar 

  26. Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic Mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol, 1999, 6: 251–263

    Article  CAS  Google Scholar 

  27. Arai T, Takahashi K, Kubo A, Nakahara S. The structure of saframycin C has been established by an X-ray crystallographic analysis. This result allows the assignment of structure of the closely related saframycin B by 13C NMR spectroscopy. Tetrahedron Lett, 1979, 25: 2355–2358

    Article  Google Scholar 

  28. Arai T, Takahashi K, Nakahara S, Kubo A. The structure of a novel antitumor antibiotic, saframycin A. Experientia, 1980, 36: 1025–1027

    Article  CAS  Google Scholar 

  29. Lown JW, Joshua AV, Chen HH. Studies related to antitumor antibiotics. Part XXIV. High field 1H NMR analysis and conformations of saframycin A and C, Can J Chem, 1981, 59: 2945–2952

    Article  CAS  Google Scholar 

  30. Haruyama H, Kurihara H, Kondo M. Proton nuclear magnetic relaxization; an application to the study of conformation and configuration of saframycin A. Chem Pharm Bull, 1985, 33: 905–915

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Li Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, C., Tang, YM., Li, L. et al. In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O. Sci. China Chem. 55, 90–97 (2012). https://doi.org/10.1007/s11426-011-4450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4450-4

Keywords

Navigation