Skip to main content
Log in

Characterization of 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase (MenB) in phylloquinone biosynthesis of Synechocystis sp. PCC 6803

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The gene product Sll1127 is a predicted 1,4-dihydroxy-2-naphthoyl-CoA synthase catalyzing an intramolecular Claisen condensation in the phylloquinone biosynthesis of the cyanobacterium Synechocystis sp. PCC 6803. This predicted catalytic function has been verified and the enzyme has been characterized for the first time with k cat= 0.013 s−1 and K M = 9 μM. Its catalytic activity is found to strictly depend on externally added bicarbonate with an apparent K D = 0.60 mM. In addition, this enzyme is inhibited by its 1,4-dihydroxy-2-naphthoyl-CoA product through high-affinity binding, which causes a 18 nm shift of the inhibitor absorption at 392 to 410 nm and engenders a new absorption peak at 345 nm. All these properties of the cyanobacterial enzyme are closely similar to those of the Escherichia coli orthologue from the menaquinone biosynthetic pathway. These results provide additional supporting evidence for the essential role of bicarbonate as a catalytic base in the enzymatic reaction and the eubacterial origin of the enzymes in the cyanobacterial biosynthesis of phylloquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suttie JW. The importance of menaquinones in human nutrition. Auun Rev Nutr, 2004, 15: 399–417

    Article  Google Scholar 

  2. Wallace BJ, Young IG. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA menA double quinone mutant. Biochim Biophys Acta, 1977, 461: 84–100

    Article  CAS  Google Scholar 

  3. Shem AB, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature, 2003, 426: 630–635

    Article  Google Scholar 

  4. Meganathan R. Biosynthesis of menaquinone (Vitamin K2) and ubiquinone (Coenzyme Q): A perspective on enzymatic mechanisms. Vitam Horm, 2001, 61: 173–218

    Article  CAS  Google Scholar 

  5. Dowd P, Ham SW, Naganathan S, Hershline R. The mechanism of action of vitamin K. Annu Rev Nutr, 1995, 15: 419–440

    Article  CAS  Google Scholar 

  6. Berkner KL. The vitamin K-dependent carboxylase. Auun Rev Nutr, 2005, 25: 127–149

    Article  CAS  Google Scholar 

  7. Bugel S. Vitamin K and bone health in adult humans. in: Vitamin K. San Diego: Elsevier Academic Press Inc, 2008, 393–416

    Chapter  Google Scholar 

  8. Shanahan CM, Proudfoot D, Farzaneh-Far A, Weissberg PL. The role of Gla proteins in vascular calcification. Crit Rev Eukaryot Gene Expr, 1998, 8: 357–375

    CAS  Google Scholar 

  9. Jiang M., Cao Y, Guo ZF, Chen M, Chen X, Guo Z. Menaquinone biosynthesis in Escherichia coli: Identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) as a novel intermediate and re-evaluation of MenD activity. Biochemistry, 2007, 46: 10979–10989

    Article  CAS  Google Scholar 

  10. Jiang M, Chen M, Cao Y, Yang Y, Sze KH, Chen X, Guo Z. Determination of the stereochemistry of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic acid, a key intermediate in menaquinone biosynthesis. Org Lett, 2007, 9: 4765–4767

    Article  CAS  Google Scholar 

  11. Jiang M, Chen X, Guo ZF, Cao Y, Chen M, Guo Z. Identification and characterization of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry, 2008, 47: 3426–3434

    Article  CAS  Google Scholar 

  12. Glasner ME, Fayazmanesh N, Chiang RA, Sakai A, Jacobson MP, Gerlt JA, Babbitt PC. Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily. J Mol Biol, 2006, 360: 228–250

    Article  CAS  Google Scholar 

  13. Gross J, Meurer J, Bhattacharya D. Evidence of a chimeric genome in the cyannobacterial ancestor of plastids. BMC Evol Biol, 2008, 8: 117

    Article  Google Scholar 

  14. Johnson TW, Shen G, Zybailov B, Kolling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH, Chitnis PR. Recruitment of a foreign quinone into the A1 site of photosystem II. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. PCC 6803. J Biol Chem, 2000, 275: 8523–8530

    Article  CAS  Google Scholar 

  15. Johnson TW, Naithani S, Stewart C, Zybailov B, Jones AD, Golbeck JH, Chitnis PR. The menD and menE homologs code for 2-succinyl-6-hydroxyl-2,4-cyclohexadiene-1-carboxylate synthase and o-succinyl-benzoic acid-CoA synthase in the phylloquinone biosynthetic pathway of Synechocystis sp. PCC 6803. Biochim Biophys Acta, 2003, 1557: 67–76

    Article  Google Scholar 

  16. Widhalm JR, Oostende C, Furt F, Basset GJC. A dedicated thioesterase of the hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc Natl Acad Sci USA, 2009, 106: 5599–5603

    Article  CAS  Google Scholar 

  17. Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J. A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem, 2006, 281: 17189–17196

    Article  CAS  Google Scholar 

  18. Wildermuth MC, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414: 562–571

    Article  CAS  Google Scholar 

  19. Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP. Characterization and biological function of the isochorismate synthase gene of Arabidopsis. Plant Physiol, 2008, 147: 1279–1287

    Article  CAS  Google Scholar 

  20. Kim HU, Oostende C, Basset GJC, Browse J. The AAE14 gene encodes the Arabidopsis o-succinylbenzoyl-CoA ligase that is essential for phylloquinone synthesis and photosystem-I function. Plant J, 2008, 54: 272–283

    Article  CAS  Google Scholar 

  21. Lee K, Zhan X, Gao J, Qiu J, Feng Y, Meganathan R., Cohen SN, Georgiou G. RraA: a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell, 2003, 114: 623–634

    Article  CAS  Google Scholar 

  22. Lee PT, Hsu A Y, Ha HT, Clarke CF. A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J Bacteriol, 1997, 179: 1748–1754

    CAS  Google Scholar 

  23. Kolappan S, Zwahlen J, Zhou R, Truglio JJ, Tonge PJ, Kisker C. Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli: Implications for an enzyme family. Biochemistry, 2007, 46: 946–953

    Article  CAS  Google Scholar 

  24. Dawson A, Chen M, Fyfe PK, Guo ZH, Hunter WN. Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis. J Mol Biol, 2010, 401: 253–264

    Article  CAS  Google Scholar 

  25. Bhattacharyya DK, Kwon O, Meganathan R. Vitamin K2 (Menaquinone) biosynthesis in Escherichia coli: Evidence for the presence of an essential histidine residue in o-succinylbenzoyl coenzyme A synthetase. J Bacteriol, 1997, 179: 6061–6065

    CAS  Google Scholar 

  26. Thompson TB, Garrett JB, Taylor EA, Meganathan, R, Gerlt JA, Rayment I. Evolution of enzymatic activity in the enolase superfamily: Structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate. Biochemistry, 2000, 39: 10662-10676

    Google Scholar 

  27. Truglio JJ, Theis K, Feng Y, Gajda R, Machutta C, Tonge PJ, Kisker C. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem, 2003, 278: 42352–42360

    Article  CAS  Google Scholar 

  28. Chen M, Jiang M, Sun Y, Guo ZF, Guo Z. Stabilization of the second oxyanion intermediate by 1,4-dihydroxy-2-naphthoyl coenzyme A synthase of the menaquinone pathway: Spectroscopic evidence of the involvement of a conserved aspartic acid. Biochemistry, 2011, 50: 5893–5904

    Google Scholar 

  29. Jiang M, Chen X, Wu XH, Chen M, Wu Y, Guo Z. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: Identification and mutational analysis of the active site residues. Biochemistry, 2009, 48: 6921–6931

    Article  CAS  Google Scholar 

  30. Dawson A, Fyfe PK, Gillet F, Hunter WN. Exploiting the high-resolution crystal structure of Staphylococcus aureus MenH to gain insight into enzyme activity. BMC Struct Biol, 2011, 11: 19

    Article  CAS  Google Scholar 

  31. Jiang M, Chen M, Guo ZF, Guo Z. A bicarbonate cofactor modulates 1,4-dihydroxy-2-naphthoyl coenzyme A synthase in menaquinone biosynthesis of Escherichia coli. J Biol Chem, 2010, 285: 30159–30169

    Article  CAS  Google Scholar 

  32. Grisostomi G, Kast P, Pulido R, Huynh J, Hilvert D. Efficient in vivo synthesis and rapid purification of chorismic acid using an engineered Escherichia coli strain. Bioorg Chem, 1997, 25: 297–305

    Article  CAS  Google Scholar 

  33. Guo ZF, Sun Y, Zheng S, Guo Z. Preferential hydrolysis of aberrant precursors suggests an active proofreading mechanism for the type II thioesterase in Escherichia coli enterobactin biosynthesis. Biochemistry, 2009, 48: 1712–1722

    Article  CAS  Google Scholar 

  34. Jiang M, Guo Z. Effects of macromolecular crowding on the intrinsic catalytic efficiency and structure of enterobactin-specific isochorismate synthase. J Am Chem Soc, 2007, 129: 730–731

    Article  CAS  Google Scholar 

  35. Guo ZF, Jiang M, Zheng S, Guo Z. Suppression of linear side products by macromolecular crowding in nonribosomal enterobactin biosynthesis. Org Lett, 2008, 10: 649–652

    Article  CAS  Google Scholar 

  36. Shevela D, Klimov V, Messinger J. Interactions of photosystem II with bicarbonate, formate and acetate. Photosynth Res, 2007, 94: 247–264

    Article  CAS  Google Scholar 

  37. Li HL, Li X, Liu N, Zhang H, Truglio JJ, Mishra S, Kisker CF, Garcia-Diaz M, Tonge PJ, Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry, 2011, 50: 9532–9544

    Article  CAS  Google Scholar 

  38. Igbavboa U, Leistner E. Sequence of proton abstraction and stereochemistry of the reaction catalyzed by naphthoate synthase, an enzyme involved in menaquinone (vitamin K2) biosynthesis. Eur J Biochem, 1990, 192: 441–449

    Article  CAS  Google Scholar 

  39. Zhang H, Tonge PJ. The catalytic mechanism of MenB, the 1,4-dihydroxynaphthoyl-CoA synthase from Mycobacterium tuberculosis. FASEB J, 2006, 20: A41

    Google Scholar 

  40. Ulaganathan V, Agacan MF, Buetow L, Tulloch LB, Hunter WN. Structure of Staphylococcus aureus 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) in complex with acetoacetyl-CoA. Acta Cryst, 2007, F63: 908–913

    Google Scholar 

  41. Kanaujia SP, Ranjani CV, Jeyakanthan J, Baba S, Kuroishi C, Ebihara A, Shinkai A, Kuramitsu S, Shiro Y, Sekar K, Yokoyama S. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus. Acta Cryst, 2007, F63: 103–105

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiHong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Guo, Z. Characterization of 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase (MenB) in phylloquinone biosynthesis of Synechocystis sp. PCC 6803. Sci. China Chem. 55, 98–105 (2012). https://doi.org/10.1007/s11426-011-4448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4448-y

Keywords

Navigation