Skip to main content
Log in

Preparation of true solutions of monomeric amyloidogenic protein/peptide: A critical prerequisite for aggregation kinetic study

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Our dynamic laser light scattering (LLS) study shows that the current widely used protocols of dissolving amyloidogenic protein/peptide do not really result in a true solution; namely, there always exist a trace amount of interchain aggregates, which greatly affect the association kinetics, partially explaining why different kinetics were reported even for a solution with identical protein and solvent. Recently, using a combination of the conventional dissolution procedure and our newly developed ultra-filtration method, we have developed a novel protocol to prepare a true solution of amyloidogenic protein/peptide without any interchain aggregates. The resultant solutions remain in their monomeric state for at least one week, which is vitally important for further study of the very initial stage of the interchain association under the physiological conditions because more and more evidence suggests that it is those small oligomers rather than large fabric aggregates that are cytotoxic. In addition, this study shows that combining static and dynamic LLS can lead to more physical and microscopic information about the protein association instead of only the size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selkoe DJ. Folding proteins in fatal ways. Nature, 2003, 426: 900–904

    Article  CAS  Google Scholar 

  2. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem, 2006, 75: 333–366

    Article  CAS  Google Scholar 

  3. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300: 486–489

    Article  CAS  Google Scholar 

  4. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med, 2008, 14: 837–842

    Article  CAS  Google Scholar 

  5. Palhano FL, Rocha CB, Bernardino A, Weissmuller G, Masuda CA, Montero-Lomelí M, Gomes AM, Chien P, Fernandes PM, Foguel DA. fluorescent mutant of the NM domain of the yeast prion Sup35 provides insight into fibril formation and stability. Biochemistry, 2009, 48: 6811–6823

    Article  CAS  Google Scholar 

  6. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell, 1997, 89: 811–819

    Article  CAS  Google Scholar 

  7. Hess S, Lindquist SL, Scheibel T. Alternative assembly pathways of the amyloidogenic yeast prion determinant Sup35-NM. Embo Reports, 2007, 8: 1196–1201

    Article  CAS  Google Scholar 

  8. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A. Beta-amyloid monomers are neuroprotective. J Neurosci, 2009, 29: 10582–10587

    Article  CAS  Google Scholar 

  9. Georgalis Y, Starikov EB, Hollenbach B, Lurz R, Scherzinger E, Saenger W, Lehrach H, Wanker EE. Huntingtin aggregation monitored by dynamic light scattering. Proc Natl Acad Sci USA, 1998, 95: 6118–6121

    Article  CAS  Google Scholar 

  10. Chen SM, Wetzel R. Solubilization and disaggregation of polyglutamine peptides. Protein Sci, 2001, 10: 887–891

    Article  CAS  Google Scholar 

  11. Scheibel T, Lindquist SL. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat Struct Biol, 2001, 8: 958–962

    Article  CAS  Google Scholar 

  12. Cummings CJ, Zoghbi HY. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet, 2000, 1: 281–328

    Article  CAS  Google Scholar 

  13. Walker FO. Huntington's disease. Lancet, 2007, 369: 218–228

    Article  CAS  Google Scholar 

  14. Chen CY, Rojanatavorn K, Clark AC, Shih JC. Characterization and enzymatic degradation of Sup35NM, a yeast prion-like protein. Protein Sci, 2005, 14: 2228–2235

    Article  CAS  Google Scholar 

  15. Walsh DM, Selkoe DJ. A beta oligomers-a decade of discovery. J Neurochem, 2007, 101: 1172–1184

    Article  CAS  Google Scholar 

  16. Chen QJ, Zhao H, Ming T, Wang JF, Wu C. Nanopore extrusion-induced transition from spherical to cylindrical block copolymer micelles. J Am Chem Soc, 2009, 131: 16650–16651

    Article  CAS  Google Scholar 

  17. Ge H, Jin F, Li JF, Wu C. How much force is needed to stretch a coiled chain in solution? Macromolecules, 2009, 42: 4400–4402

    Article  CAS  Google Scholar 

  18. Ge H, Wu C. Separation of linear and star chains by a nanopore. Macromolecules, 2010, 43: 8711–8713

    Article  CAS  Google Scholar 

  19. Foguel D, Palhano FL, Rocha CB, Bernardino A, Weissmuller G, Masuda CA, Montero-Lomeli M, Gomes AM, Chien P, Fernandes PMB. A fluorescent mutant of the NM domain of the yeast prion Sup35 provides insight into fibril formation and stability. Biochemistry, 2009, 48: 6811–6823

    Article  Google Scholar 

  20. Tanaka M, Ohhashi Y, Ito K, Toyama BH, Weissman JS. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Bio, 2010, 6: 225–230

    Article  Google Scholar 

  21. Wu C, Xia KQ. Incorporation of a differential refractometer into a laser light-scattering spectrometer. Rev Sci Instrum, 1994, 65: 587–590

    Article  CAS  Google Scholar 

  22. LeVine H. Quantification of beta-sheet amyloid fibril structures with thioflavin T. In Amyloid, Prions, and Other Protein Aggregates. Academic Press Inc, 1999, 309: 274

    Article  CAS  Google Scholar 

  23. Colby DW, Zhang Q, Wang S, Groth D, Legname G, Riesner D, Prusiner SB. Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA, 2007, 105: 1774–11774

    Google Scholar 

  24. Garcia-Martin F, Quintanar-Audelo M, Garcia-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F. ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem, 2006, 8: 213–22

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wu.

Additional information

Contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, S., Zhao, H., Wang, W. et al. Preparation of true solutions of monomeric amyloidogenic protein/peptide: A critical prerequisite for aggregation kinetic study. Sci. China Chem. 55, 118–124 (2012). https://doi.org/10.1007/s11426-011-4446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4446-0

Keywords

Navigation