Skip to main content
Log in

Cobalt catalysts supported on silica nanotubes for Fischer-Tropsch synthesis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Silica nanotubes (SNT) have been synthesized using carbon nanotubes (CNT) as a template. Silica-coated carbon nanotubes (SNT-CNT) and SNT were loaded with a cobalt catalyst for use in Fischer-Tropsch synthesis (FTS). The catalysts were prepared by incipient wetness impregnation and characterized by N2 physisorption, X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR) and transmission electron microscopy (TEM). FTS performance was evaluated in a fixed-bed reactor at 493 K and 1.0 MPa. Co/CNT and Co/SNT catalysts showed higher activity than Co/SNT-CNT in FTS because of the smaller cobalt particle size, higher dispersion and stronger reducibility. The results also showed that structure of the support affects the product selectivity in FTS. The synergistic effects of cobalt particle size, catalytic activity and diffusion limitations as a consequence of its small average pore size lead to medium selectivity to C5+ hydrocarbons and CH4 over Co/SNT-CNT. On the other hand, the Co/CNT showed higher CH4 selectivity and lower C5+ selectivity than Co/SNT, due to its smaller average pore size and cobalt particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartholomew CH. Recent developments in Fischer-Tropsch catalysis. Stud Surf Sci Catal, 1991, 64: 158–224

    Article  CAS  Google Scholar 

  2. Dry ME. Fischer-Tropsch reactions and the environment. Appl Catal A: Gen, 1999, 189: 185–190

    Article  CAS  Google Scholar 

  3. Dry ME. The Fischer-Tropsch process: 1950–2000. Catal Today, 2002, 71: 227–241

    Article  CAS  Google Scholar 

  4. Rodriquez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36: 159–175

    Article  Google Scholar 

  5. Van Steen E, Prinsloo FF. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal Today, 2002, 71: 327–334

    Article  Google Scholar 

  6. Hoogenraad MS, van Leeuwarden RAGMM, van Breda-Vriesman GJB, Broersma A, Van Dillen AJ, Geus JW. Metal catalysts supported on a novel carbon support. Stud Surf Sci Catal, 1995, 91: 263–271

    Article  CAS  Google Scholar 

  7. Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A: Gen, 2003, 253: 337–358

    Article  CAS  Google Scholar 

  8. Reuel RC, Bartholomew CH. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. J Catal, 1984, 85: 78–88

    Article  CAS  Google Scholar 

  9. Khodakov AY, Constant AG, Bechara R, Zholobenko VL. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal, 2002, 206: 230–241

    Article  CAS  Google Scholar 

  10. Borg Ø, Spjelkavik AI, Tveten E, Walmsley JC, Diplas S, Eri S, Holmen S, Rytter E. Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution. J Catal, 2008, 259: 161–164

    Article  CAS  Google Scholar 

  11. Jacobs G, Das TK, Zhang YQ, Li JL, Racoillet G, Davis BH. Fischer-Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A: Gen, 2002, 233: 263–281

    Article  CAS  Google Scholar 

  12. Iglesia E, Soled SL, Fiato RA. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal, 1992, 137: 212–224

    Article  CAS  Google Scholar 

  13. Iglesia E, Soled SL, Fiato RA. Bimetallic synergy in cobalt-ruthenium Fischer-Tropsch synthesis catalysts. J Catal, 1993, 143: 345–368

    Article  CAS  Google Scholar 

  14. Barrientos-Ramírez S, Ramos-Fernández, EV, Silvestre-Albero J, Sepúlveda-Escribano A, Pastor-Blas MM, González-Montiel A. Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate. Micropor Mesopor Mater, 2009, 120: 132–140

    Article  Google Scholar 

  15. Wang JX, Wen LX, Wang ZH, Wang M, Shao L, Chen JF. Facile synthesis of hollow silica nanotubes and their application as supports for immobilization of silver nanoparticles. Scripta Mater, 2004, 51: 1035–1039

    Article  CAS  Google Scholar 

  16. Trepanier M, Tavasoli A, Dalai AK, Abatzoglou N. Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis. Appl Catal A: Gen, 2009, 353: 193–202

    Article  CAS  Google Scholar 

  17. Chen W, Fan ZL, Pan XL, Bao XH. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J Am Chem Soc, 2008, 130: 9414–9419

    Article  CAS  Google Scholar 

  18. Zhang QH, Kang JC, Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity. Chem-CatChem, 2010, 2:1030–1058

    CAS  Google Scholar 

  19. Kang JC, Zhang SL, Zhang QH, Wang Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew Chem Int Ed, 2009, 48: 2565–2568

    Article  CAS  Google Scholar 

  20. Wang CF, Pan XL, Bao XH, Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst. Chin Sci Bull, 2010, 55: 1117–1119

    Article  CAS  Google Scholar 

  21. Mokoena EM. Synthesis and use of silica materials as supports for the Fischer-Tropsch reaction. Dissertation for Doctoral Degree. Johannesburg: Faculty of Science, University of the Witwatersrand, 2005

    Google Scholar 

  22. Prieto G, Martinez A, Murciano R, Arribas MA. Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer-Tropsch synthesis. Appl Catal A: Gen, 2009, 367: 146–156

    Article  CAS  Google Scholar 

  23. Borg Ø, Eri S, Blekkan EA, Stosater S, Wigum H, Rytter E, Holmen A. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J Catal, 2007, 248: 89–100

    Article  CAS  Google Scholar 

  24. Belambe AR, Oukaci R, Goodwin Jr JG. Effect of pretreatment on the activity of a Ru-promoted Co/Al2O3 Fischer-Tropsch catalyst. J Catal, 1997, 166: 8–15

    Article  CAS  Google Scholar 

  25. Aaserud C, Hilmen AM, Bergene E, Eri S, Schanke D, Holmen A. Hydrogenation of propene on cobalt Fischer-Tropsch catalysts. Catal Lett, 2004, 94: 171–176

    Article  CAS  Google Scholar 

  26. Trepanier M, Dalai A-K, Abatzoglou N. Synthesis of CNT-supported cobalt nanoparticle size on reducibility, activity and selectivity in Fischer-Tropsch reactions. Appl Catal A: Gen, 2010, 374: 79–86

    Article  CAS  Google Scholar 

  27. Lapszewicz JA, Loeh HJ, Chipperfield JR. The effect of catalyst porosity on methane selectivity in the Fischer-Tropsch reaction. J Chem Soc, Chem Commun, 1993, 11: 913–914

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinLin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, H., Liew, K. & Li, J. Cobalt catalysts supported on silica nanotubes for Fischer-Tropsch synthesis. Sci. China Chem. 55, 145–150 (2012). https://doi.org/10.1007/s11426-011-4440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4440-6

Keywords

Navigation