Skip to main content
Log in

Chemical synthesis of a cyclotide via intramolecular cyclization of peptide O-esters

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cyclotides constitute a fascinating family of circular proteins containing ca. 30 amino acid residues. They have a unique cyclic cysteine knot topology and exhibit remarkable thermal, chemical and enzymatic stabilities. These characteristics enable them to have a range of biological activities and promising pharmaceutical and agricultural applications. Here, we present a practical strategy for the chemical synthesis of cyclotides through the intramolecular ligation of fully unprotected peptide O-esters. This strategy involves the mild Fmoc solid-phase peptide synthesis of the peptide O-ester backbone, the head-to-tail cyclization of the cyclotide backbone by native chemical ligation, and the oxidative refolding to yield the natural knot protein. The simplicity and high efficiency of the strategy can be employed in the synthesis of artificial cyclotides for pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craik DJ, Daly NL, Mulvenna J, Plan MR, Trabi M. Discovery, structure and biological activities of the cyclotides. Curr Protein Pept Sci, 2004, 5: 297–315

    Article  CAS  Google Scholar 

  2. Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol, 1999, 294: 1327–1336

    Article  CAS  Google Scholar 

  3. Craik DJ, Conibear AC. The chemistry of cyclotides. J Org Chem, 2011, 76: 4805–4817

    Article  CAS  Google Scholar 

  4. Ireland DC, Wang CK, Wilson JA, Gustafson KR, and Craik DJ. Cyclotides as natural anti-HIV agents. Biopolymers, 2008, 90: 51–60

    Article  CAS  Google Scholar 

  5. Rosengren KJ, Goransson U, Otvos L, Craik D. Cyclization of pyrrhocoricin retains structural elements crucial for the antimicrobial activity of the native peptide. Biopolymers, 2004, 76: 446–458

    Article  CAS  Google Scholar 

  6. Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Hong TT, Pham TTC, Nguyen DL. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry, 2000, 39: 5722–5730

    Article  CAS  Google Scholar 

  7. Kisangau DP, Hosea KM, Lyaruu HVM, Joseph C, Mbwambo ZH, Masimba PJ, Gwandu CB, Bruno LN, Devkota KP, Sewald N. Screening of traditionally used Tanzanian medicinal plants for antifungal activity. Pharm Biol, 2009, 47: 708–716

    Article  Google Scholar 

  8. Daly NL, Craik DJ. Design and therapeutic applications of cyclotides. Future Med Chem, 2009, 1: 1613–1622

    Article  CAS  Google Scholar 

  9. Craik DJ, Daly NL. Bioactive cystine knot proteins. Cur Opin Chem Biol, 2011, 15: 362–368

    Article  Google Scholar 

  10. Tam JP, Lu YA. Synthesis of large cyclic cystine-knot peptide by orthogonal coupling strategy using unprotected peptide precursor. Tetrahedron Lett, 1997, 38: 5599–5602

    Article  CAS  Google Scholar 

  11. Tam JP, Lu YA, Yu QT. Thia zip reaction for synthesis of large cyclic peptides: Mechanisms and applications. J Am Chem Soc, 1999, 121: 4316–4324

    Article  CAS  Google Scholar 

  12. Tam JP, Lu YA, Yang JL, Chiu KW. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystineknot disulfides. Proc Natl Acad Sci USA, 1999, 96: 8913–8918

    Article  CAS  Google Scholar 

  13. Craik DJ, Daly NL, Love S, Alewood PF. Chemical synthesis and folding pathways of large cyclic polypeptide: Studies of the cystine knot polypeptide kalata B1. Biochemistry, 1999, 38: 10606–10614

    Article  Google Scholar 

  14. Leatherbarrow RJ, Thongyoo P, Tate EW. Total synthesis of the macrocyclic cysteine knot microprotein MCoTI-II. Chem Commun, 2006, 2848–2850

  15. Goransson U, Aboye TL, Clark RJ, Craik DJ. Ultra-stable peptide scaffolds for protein engineering — Synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. ChemBioChem, 2008, 9: 103–113

    Article  Google Scholar 

  16. Goransson U, Park S, Gunasekera S, Aboye TL. An Efficient Approach for the total synthesis of cyclotides by microwave assisted Fmoc-SPPS. Int J Pept Res Ther, 2010, 16: 167–176

    Article  Google Scholar 

  17. Camarero JA, Muir TW. Chemoselective backbone cyclization of unprotected peptides. Chem Commun, 1997, 1369–1370

  18. Schnolzer M, Alewood P, Jones A, Alewood D, Kent SBH. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Res Ther, 2007, 13: 31–44

    Article  CAS  Google Scholar 

  19. Backes BJ, Virgilio AA, Ellman JA. Activation method to prepare a highly reactive acylsulfonamide “safety-catch” linker for solid-phase synthesis. J Am Chem Soc, 1996, 118: 3055–3056

    Article  CAS  Google Scholar 

  20. Ingenito R, Bianchi E, Fattori D, Pessi A. Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J Am Chem Soc, 1999, 121: 11369–11374

    Article  CAS  Google Scholar 

  21. Macmillan D, Kang J. Peptide and protein thioester synthesis via N-to-S acyl transfer. Org Biomol Chem, 2010, 8: 1993–2002

    Article  Google Scholar 

  22. Botti P, Manganiello S, Gaertner H. Native chemical ligation through in situ O to S acyl shift. Org Lett, 2004, 6: 4861–4864

    Article  CAS  Google Scholar 

  23. Warren JD, Miller JS, Keding SJ, Danishefsky SJ. Toward fully synthetic glycoproteins by ultimately convergent routes: A solution to a long-standing problem. J Am Chem Soc, 2004, 126: 6576–6578

    Article  CAS  Google Scholar 

  24. Zheng JS, Cui HK, Fang GM, Xi WX, Liu L. Chemical protein synthesis by kinetically controlled ligation of peptide O-esters. Chem-BioChem, 2010, 11: 511–515

    CAS  Google Scholar 

  25. Zheng JS, Xi WX, Wang FL, Guo QX, Li J. Fmoc-SPPS chemistry compatible approach for the generation of (glyco)peptide aryl thioesters. Tetrahedron Lett, 2011, 52: 2655–2660

    Article  CAS  Google Scholar 

  26. Zheng JS, Chang HN, Wang FL, Liu L. Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation. J Am Chem Soc, 2011, 133: 11080–11083

    Article  CAS  Google Scholar 

  27. Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu, L. Protein chemical synthesis by ligation of peptide hydrazides. Angew Chem Int Ed, 2011, 50: 7645–7649

    Article  CAS  Google Scholar 

  28. Johnson ECB, Kent SBH. Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc, 2006, 128: 6640–6646

    Article  CAS  Google Scholar 

  29. Clark RJ, Craik D J. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers, 2010, 94: 414–422

    Article  CAS  Google Scholar 

  30. Craik DJ, Kaas Q. Analysis and classification of circular proteins in CyBase. Biopolymers, 2010, 94: 584–591

    Article  Google Scholar 

  31. Shen F, Zhang ZP, Li JB, Lin Y, Liu L. Hydrazine-sensitive thiol protecting group for peptide and protein chemistry. Org Lett, 2011, 13: 568–571

    Article  CAS  Google Scholar 

  32. Kimura RH, Tran AT, Camarero JA. Biosynthesis of the cyclotide Kalata B1 by using protein splicing. Angew Chem Int Ed, 2006, 45: 973–976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Shi or Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, JS., Chang, HN., Shi, J. et al. Chemical synthesis of a cyclotide via intramolecular cyclization of peptide O-esters. Sci. China Chem. 55, 64–69 (2012). https://doi.org/10.1007/s11426-011-4434-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4434-4

Keywords

Navigation