Skip to main content
Log in

Understanding protein palmitoylation: Biological significance and enzymology

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein palmitoylation is a widespread lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group. This lipid modification is readily reversible; a feature of protein palmitoylation that allows for rapid regulation of the function of many cellular proteins. Mutations in palmitoyltransferases (PATs), the enzymes that catalyze the formation of this modification, are associated with a number of neurological diseases and cancer progression. This review summarizes the crucial role of palmitoylation in biological systems, the discovery of the DHHC protein family that catalyzes protein palmitoylation, and the development of methods for investigating the catalytic mechanism of PATs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevens TJ, fluorescence-based high performance liquid chromatographic method for the characterization of palmitoyl acyl transferase activity. Anal Biochem, 2002, 308: 160–167

    Article  CAS  Google Scholar 

  2. Terry KL, Casey PJ, Beese LS. Conversion of protein farnesyltransferase to a geranylgeranyltransferase. Biochemistry, 2006, 45: 9746–9755

    Article  CAS  Google Scholar 

  3. Fields TA, Casey PJ. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J, 1997, 321: 561–571

    CAS  Google Scholar 

  4. Higgins JB, Casey PJ. The role of prenylation in G-protein assembly and function. Cell Signal, 1996, 8: 433–437

    Article  CAS  Google Scholar 

  5. Thomason PA, James SR, Casey PJ, Downes CP. A G-protein beta gamma-subunit-responsive phosphoinositide 3-kinase activity in human platelet cytosol. J Biol Chem, 1994, 269: 16525–16528

    CAS  Google Scholar 

  6. Kurosaki T, Hikida M. Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev, 2009, 228: 132–148

    Article  CAS  Google Scholar 

  7. Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signalling, 2007, 19: 672–682

    Article  CAS  Google Scholar 

  8. Latour S, Veillette A. Proximal protein tyrosine kinases in immunoreceptor signaling. Curr Opin Immunol, 2001, 13: 299–306

    Article  CAS  Google Scholar 

  9. Ellery JM, Kempshall SJ, Nicholls PJ. Activation of the interleukin 2 receptor: A possible role for tyrosine phosphatases. Cell Signalling, 2000, 12: 367–373

    Article  CAS  Google Scholar 

  10. Kamata H, Hirata H. Redox regulation of cellular signaling. Cell Signalling, 1998, 11: 1–14

    Article  Google Scholar 

  11. Neel BG, Tonks NK. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol, 1997, 9: 193–204

    Article  CAS  Google Scholar 

  12. Charollais J, Van DGFG. Palmitoylation of membrane proteins. Mol Membr Biol, 2009, 26: 55–66

    Article  CAS  Google Scholar 

  13. Fukata Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci, 2010, 11: 161–175

    Article  CAS  Google Scholar 

  14. Zhang FL, Casey PJ. Protein prenylation: Molecular mechanisms and functional consequences. Annu Rev Biochem, 1996, 65: 241–269

    Article  CAS  Google Scholar 

  15. Winter-Vann AM, Casey PJ. Opinion: Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer, 2005, 5: 405–412

    Article  CAS  Google Scholar 

  16. Sebti SM, Hamilton AD. Farnesyltransferase and geranylgeranyltransferase I inhibitors and cancer therapy: Lessons from mechanism and bench-to-bedside translational studies. Oncogene, 2000, 19: 6584–6593

    Article  CAS  Google Scholar 

  17. Magee T, Seabra MC. Fatty acylation and prenylation of proteins: What’s hot in fat. Curr Opin Cell Biol, 2005, 17: 190–196

    Article  CAS  Google Scholar 

  18. Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI. Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem, 1994, 63: 869–914

    Article  CAS  Google Scholar 

  19. Farazi TA, Waksman G, Gordon JI. The biology and enzymology of protein N-myristoylation. J Biol Chem, 2001, 276: 39501–39504

    Article  CAS  Google Scholar 

  20. Greaves J, Chamberlain LH. DHHC palmitoyl transferases: Substrate interactions and (patho)physiology. Trends Biochem Sci, 2011, 36: 245–253

    Article  CAS  Google Scholar 

  21. Planey SL, Zacharias DA. Palmitoyl acyltransferases, their substrates, and novel assays to connect them. Mol Membr Biol, 2009, 26: 14–31

    Article  CAS  Google Scholar 

  22. Baekkeskov S, Kanaani J. Palmitoylation cycles and regulation of protein function. Mol Membr Biol, 2009, 26: 42–54

    Article  CAS  Google Scholar 

  23. Wan J, Roth AF, Bailey AO, Davis NG. Palmitoylated proteins: Pu rification and identification. Nat Protoc, 2007, 2: 1573–1584

    Article  CAS  Google Scholar 

  24. Linder ME, Deschenes RJ. Palmitoylation: Policing protein stability and traffic. Nat Rev Mol Cell Biol, 2007, 8: 74–84

    Article  CAS  Google Scholar 

  25. Chakrabandhu K, Herincs Z, Huault S, Dost B, Peng L, Conchonaud F, Marguet D, He H-T, Hueber A-O. Palmitoylation is required for efficient Fas cell death signaling. EMBO J, 2007, 26: 209–220

    Article  CAS  Google Scholar 

  26. Smotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins: Regulation and function. Annu Rev Biochem, 2004, 73: 559–587

    Article  CAS  Google Scholar 

  27. Osterhout JL, Waheed AA, Hiol A, Ward RJ, Davey PC, Nini L, Wang J, Milligan G, Jones TLZ, Druey KM. Palmitoylation Regulates Regulator of G-protein Signaling (RGS) 16 Function: II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signaling. J Biol Chem, 2003, 278: 19309–19316

    Article  CAS  Google Scholar 

  28. Mumby SM, Kleuss C, Gilman AG. Receptor regulation of G-protein palmitoylation. Proc Natl Acad Sci USA, 1994, 91: 2800–2804

    Article  CAS  Google Scholar 

  29. Greaves J, Carmichael JA, Chamberlain LH. The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway: Regulation by a C-terminal domain. Mol Biol Cell, 2011, 22: 1887–1895

    Article  CAS  Google Scholar 

  30. Zhang MM, Tsou LK, Charron G, Raghavan AS, Hang HC. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc Natl Acad Sci USA, 2010, 107: 8627–8632

    Article  CAS  Google Scholar 

  31. Salaun C, Greaves J, Chamberlain LH. The intracellular dynamic of protein palmitoylation. J Cell Biol, 2010, 191: 1229–1238

    Article  CAS  Google Scholar 

  32. Conibear E, Davis NG. Palmitoylation and depalmitoylation dynamics at a glance. J Cell Sci, 2010, 123: 4007–4010

    Article  CAS  Google Scholar 

  33. Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M. Dynamic protein palmitoylation in cellular signaling. Prog Lipid Res, 2009, 48: 117–127

    Article  CAS  Google Scholar 

  34. Basu J. Protein palmitoylation and dynamic modulation of protein function. Curr Sci, 2004, 87: 212–217

    CAS  Google Scholar 

  35. Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther, 2003, 97: 1–33

    Article  CAS  Google Scholar 

  36. Bartels DJ, Mitchell DA, Dong X, Deschenes RJ. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol, 1999, 19: 6775–6787

    CAS  Google Scholar 

  37. Tian L, Jeffries O, McClafferty H, Molyvdas A, Rowe ICM, Saleem F, Chen L, Greaves J, Chamberlain LH, Knaus H-G, Ruth P, Shipston MJ. Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proc Natl Acad Sci USA, 2008, 105: 21006–21011

    Article  CAS  Google Scholar 

  38. Tsutsumi R, Fukata Y, Noritake J, Iwanaga T, Perez F, Fukata M. Identification of G protein α subunit-palmitoylating enzyme. Mol Cell Biol, 2009, 29: 435–447

    Article  CAS  Google Scholar 

  39. Masuda K, Itoh H, Sakihama T, Akiyama C, Takahashi K, Fukuda R, Yokomizo T, Shimizu T, Kodama T, Hamakubo T. A combinatorial G protein-coupled receptor reconstitution system on budded baculovirus. Evidence for Gαi and Gαo coupling to a human leukotriene B4 receptor. J Biol Chem, 2003, 278: 24552–24562

    CAS  Google Scholar 

  40. Sandilands E, Brunton VG, Frame MC. The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. J Cell Sci, 2007, 120: 2555–2564

    Article  CAS  Google Scholar 

  41. Dighe SA, Kozminski KG. Swf1p, a member of the DHHC-CRD family of palmitoyltransferases, regulates the actin cytoskeleton and polarized secretion independently of its DHHC motif. Mol Biol Cell, 2008, 19: 4454–4468

    Article  CAS  Google Scholar 

  42. Wang D-A, Sebti SM. Palmitoylated cysteine 192 is required for RhoB tumor-suppressive and apoptotic activities. J Biol Chem, 2005, 280: 19243–19249

    Article  CAS  Google Scholar 

  43. Bhattacharyya R, Wedegaertner PB. Gα13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding. J Biol Chem, 2000, 275: 14992–14999

    Article  CAS  Google Scholar 

  44. Patterson SI, Skene JHP. A shift in protein S-palmitoylation, with persistence of growth-associated substrates, marks a critical period for synaptic plasticity in developing brain. J Neurobiol, 1999, 39: 423–437

    Article  CAS  Google Scholar 

  45. Wang J, Xie Y, Wolff DW, Abel PW, Tu Y. DHHC protein-dependent palmitoylation protects regulator of G-protein signaling 4 from proteasome degradation. FEBS Lett, 2010, 584: 4570–4574

    Article  CAS  Google Scholar 

  46. Wright LP, Philips MR. CAAX modification and membrane targeting of Ras. J Lipid Res, 2006, 47: 883–891

    Article  CAS  Google Scholar 

  47. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res, 2006, 47: 1118–1127

    Article  CAS  Google Scholar 

  48. Pechlivanis M, Kuhlmann J. Hydrophobic modifications of Ras proteins by isoprenoid groups and fatty acids — More than just membrane anchoring. Biochim Biophys Acta, 2006, 1764: 1914–1931

    CAS  Google Scholar 

  49. Resh MD. Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem, 2004, 37: 217–232

    CAS  Google Scholar 

  50. Peitzsch RM, McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: Pertinence to myristoylated proteins. Biochemistry, 1993, 32: 10436–10443

    Article  CAS  Google Scholar 

  51. Shahinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry, 1995, 34: 3813–3822

    Article  CAS  Google Scholar 

  52. Morello JP, Bouvier M. Palmitoylation: A post-translational modification that regulates signalling from G-protein coupled receptors. Biochem Cell Biol, 1996, 74: 449–457

    Article  CAS  Google Scholar 

  53. Bouvier M, Moffett S, Loisel TP, Mouillac B, Hebert T, Chidiac P. Palmitoylation of G-protein-coupled receptors: A dynamic modification with functional consequences. Biochem Soc Trans, 1995, 23: 116–120

    CAS  Google Scholar 

  54. Bouvier M, Chidiac P, Hebert TE, Loisel TP, Moffett S, Mouillac B. Dynamic palmitoylation of G-protein-coupled receptors in eukaryotic cells. Methods Enzymol, 1995, 250: 300–314

    Article  CAS  Google Scholar 

  55. O’Brien PJ, Zatz M. Acylation of bovine rhodopsin by [3H]palmitic acid. J Biolog Chem, 1984, 5054–5057

  56. Noritake J, Fukata Y, Iwanaga T, Hosomi N, Tsutsumi R, Matsuda N, Tani H, Iwanari H, Mochizuki Y, Kodama T, Matsuura Y, Bredt DS, Hamakubo T, Fukata M. Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J Cell Biol, 2009, 186: 147–160

    Article  CAS  Google Scholar 

  57. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 Palmitoylating enzymes. Neuron, 2004, 44: 987–996

    Article  CAS  Google Scholar 

  58. Topinka JR, Bredt DS. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron, 1998, 20: 125–134

    Article  CAS  Google Scholar 

  59. Ho GH, Selvakumar B, Mukai J, Hester L, Wang Y, Gogos J, Snyder S. S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron, 2011, 71: 131–141

    Article  CAS  Google Scholar 

  60. Gonzalo S, Greentree WK, Linder ME. SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain. J Biol Chem, 1999, 274: 21313–21318

    Article  CAS  Google Scholar 

  61. Greaves J, Gorleku OA, Salaun C, Chamberlain LH. Palmitoylation of the SNAP25 protein family: Specificity and regulation by DHHC palmitoyl transferases. J Biol Chem, 2010, 285: 24629–24638

    Article  CAS  Google Scholar 

  62. Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR, III, Davis NG, El-Husseini A. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature, 2008, 456: 904–909

    Article  CAS  Google Scholar 

  63. Edidin M. The state of lipid rafts: From model membranes to cells. Annu Rev Biophys Biomol Struct, 2003, 32: 257–283

    Article  CAS  Google Scholar 

  64. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol, 1998, 14: 111–136

    Article  CAS  Google Scholar 

  65. Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol, 1994, 126: 353–363

    Article  CAS  Google Scholar 

  66. Robbins SM, Quintrell NA, Bishop JM. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol, 1995, 15: 3507–3515

    CAS  Google Scholar 

  67. Guzzi F, Zanchetta D, Chini B, Parenti M. Thioacylation is required for targeting G-protein subunit Go1α to detergent-insoluble caveolin-containing membrane domains. Biochem J, 2001, 355: 323–331

    Article  CAS  Google Scholar 

  68. Arni S, Keilbaugh SA, Ostermeyer AG, Brown DA. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J Biol Chem, 1998, 273: 28478–28485

    Article  CAS  Google Scholar 

  69. Webb Y, Hermida-Matsumoto L, Resh MD. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem, 2000, 275: 261–270

    Article  CAS  Google Scholar 

  70. Kabouridis PS, Magee AI, Ley SC. S-acylation of LCK protein tyrosine kinase is essential for its signaling function in T lymphocytes. EMBO J, 1997, 16: 4983–4998

    Article  CAS  Google Scholar 

  71. Zhang W, Trible RP, Samelson LE. LAT palmitoylation: Its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity, 1998, 9: 239–246

    Article  CAS  Google Scholar 

  72. Lin J, Weiss A, Finco TS. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J Biol Chem, 1999, 274: 28861–28864

    Article  CAS  Google Scholar 

  73. Duncan JA, Gilman AG. Autoacylation of G protein subunits. J Biol Chem, 1996, 271: 23594–23600.

    Article  CAS  Google Scholar 

  74. Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras Palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem, 2002, 277: 41268–41273.

    Article  CAS  Google Scholar 

  75. Feng Y, Davis NG. Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane. Mol Cell Biol, 2000, 20: 5350–5359

    Article  CAS  Google Scholar 

  76. Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR, III, Davis NG. Global analysis of protein palmitoylation in yeast. Cell, 2006, 125: 1003–1013

    Article  CAS  Google Scholar 

  77. Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol, 2002, 159: 23–28

    Article  CAS  Google Scholar 

  78. Greaves J, Chamberlain LH. S-acylation by the DHHC protein family. Biochem Soc Trans, 2010, 38: 522–524

    Article  CAS  Google Scholar 

  79. Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem, 2002, 277: 41268–41273

    Article  CAS  Google Scholar 

  80. Smotrys JE, Schoenfish MJ, Stutz MA, Linder ME. The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J Cell Biol, 2005, 170: 1091–1099

    Article  CAS  Google Scholar 

  81. Hou H, John Peter AT, Meiringer C, Subramanian K, Ungermann C. Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism. Traffic, 2009, 10: 1061–1073

    Article  CAS  Google Scholar 

  82. Bannan BA, Van Etten J, Kohler JA, Tsoi Y, Hansen NM, Sigmon S, Fowler E, Buff H, Williams TS, Ault JG, Glaser RL, Korey CA. The Drosophila protein palmitoylome: characterizing palmitoyl-thioesterases and DHHC palmitoyl-transferases. Fly, 2008, 2: 198–214

    Google Scholar 

  83. Ducker CE, Stettler EM, French KJ, Upson JJ, Smith CD. Huntingtin interacting protein 14 is an oncogenic human protein: Palmitoyl acyltransferase. Oncogene, 2004, 23: 9230–9237

    CAS  Google Scholar 

  84. Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, MacDermott AB, Karayiorgou M, Gogos JA. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci, 2008, 11: 1302–1310

    Article  CAS  Google Scholar 

  85. Raymond FL, Tarpey PS, Edkins S, Tofts C, O’Meara S, Teague J, Butler A, Stevens C, Barthorpe S, Buck G, Cole J, Dicks E, Gray K, Halliday K, Hills K, Hinton J, Jones D, Menzies A, Perry J, Raine K, Shepherd R, Small A, Varian J, Widaa S, Mallya U, Moon J, Luo Y, Shaw M, Boyle J, Kerr B, Turner G, Quarrell O, Cole T, Easton DF, Wooster R, Bobrow M, Schwartz CE, Gecz J, Stratton MR, Futreal PA. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a marfanoid habitus. Am J Hum Genet, 2007, 80: 982–987

    Article  CAS  Google Scholar 

  86. Ohyama T, Verstreken P, Ly CV, Rosenmund T, Rajan A, Tien A-C, Haueter C, Schulze KL, Bellen HJ. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol, 2007, 179: 1481–1496

    Article  CAS  Google Scholar 

  87. Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, Orban PC, Mullard A, Cowan CM, Raymond LA, Drisdel RC, Green WN, Ravikumar B, Rubinsztein DC, El-Husseini A, Hayden MR. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci, 2006, 9: 824–831

    Article  CAS  Google Scholar 

  88. El-Husseini AE-D, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier-Campbell C, Aguilera-Moreno A, Nicoll RA, Bredt DS. Synaptic strength regulated by palmitate cycling on PSD-95. Cell, 2002, 108: 849–863

    Article  CAS  Google Scholar 

  89. El-Husseini AE, Craven SE, Chetkovich DM, Firestein BL, Schnell E, Aoki C, Bredt DS. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol, 2000, 148: 159–171

    Article  CAS  Google Scholar 

  90. Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, Yanai A, Gutekunst C-A, Leavitt BR, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch SM, Ikeda J-E, Hayden MR. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet, 2002, 11: 2815–2828

    Article  CAS  Google Scholar 

  91. Politis EG, Roth AF, Davis NG. Transmembrane topology of the protein palmitoyl transferase Akr1. J Biol Chem, 2005, 280: 10156–10163

    Article  CAS  Google Scholar 

  92. Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ. Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem, 2010, 285: 38104–38114

    Article  CAS  Google Scholar 

  93. Storer AC, Menard R. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol, 1994, 244: 486–500

    Article  CAS  Google Scholar 

  94. Zhou X, Zhang N, Liu L, Walters KJ, Hanna PE, Wagner CR. Probing the catalytic potential of the hamster arylamine N-acetyltransferase 2 catalytic triad by site-directed mutagenesis of the proximal conserved residue, Tyr190. FEBS J, 2009, 276: 6928–6941

    Article  CAS  Google Scholar 

  95. Wang H, Liu L, Hanna PE, Wagner CR. Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Biochemistry, 2005, 44: 11295–11306

    Article  CAS  Google Scholar 

  96. Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble MEM, Sim E. Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines, Biochem J, 2005, 390: 115–123

    Article  CAS  Google Scholar 

  97. Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja RR, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst C-A, Hayden MR, El-Husseini A. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron, 2004, 44: 977–986

    Article  CAS  Google Scholar 

  98. Budde C, Schoenfish MJ, Linder ME, Deschenes RJ. Purification and characterization of recombinant protein acyltransferases. Methods, 2006, 40: 143–150

    Article  CAS  Google Scholar 

  99. Draper JM, Smith CD. Palmitoyl acyltransferase assays and inhibitors. Mol Membr Biol, 2009, 26: 5–13

    Article  CAS  Google Scholar 

  100. Fernandez-Hernando C, Fukata M, Bernatchez PN, Fukata Y, Lin MI, Bredt DS, Sessa WC. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Cell Biol, 2006, 174: 369–377

    Article  CAS  Google Scholar 

  101. Resh MD. Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE, 2006, re14

  102. Drisdel RC, Alexander JK, Sayeed A, Green WN. Assays of protein palmitoylation. Methods, 2006, 40: 127–134

    Article  CAS  Google Scholar 

  103. Hang HC, Geutjes E-J, Grotenbreg G, Pollington AM, Bijlmakers MJ, Ploegh HL. Chemical probes for the rapid detection of fattyacylated proteins in mammalian Cells. J Am Chem Soc, 2007, 129: 2744–2745

    Article  CAS  Google Scholar 

  104. Martin BR, Cravatt BF. Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods, 2009, 6: 135–138

    Article  CAS  Google Scholar 

  105. Draper JM, Xia Z, Smith CD. Cellular palmitoylation and trafficking of lipidated peptides. J Lipid Res, 2007, 48: 1873–1884

    Article  CAS  Google Scholar 

  106. Varner AS, De Vos ML, Creaser SP, Peterson BR, Smith CD. A fluorescence-based high performance liquid chromatographic method for the characterization of palmitoyl acyl transferase activity. Anal Biochem, 2002, 308: 160–167

    Article  CAS  Google Scholar 

  107. Hensel J, Hintz M, Karas M, Linder D, Stahl B, Geyer R. Localization of the palmitoylation site in the transmembrane protein p12E of Friend murine leukemia virus. Eur J Biochem, 1995, 232: 373–380

    Article  CAS  Google Scholar 

  108. Liang X, Nazarian A, Erdjument-Bromage H, Bornmann W, Tempst P, Resh MD. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J Biol Chem, 2001, 276: 30987–30994

    Article  CAS  Google Scholar 

  109. Hoffman MD, Kast J. Mass spectrometric characterization of lipid-modified peptides for the analysis of acylated proteins. J Mass Spectrom, 2006, 41: 229–241

    Article  CAS  Google Scholar 

  110. Zhao Z, Hou J, Xie Z, Deng J, Wang X, Chen D, Yang F, Gong W. Acyl-biotinyl exchange chemistry and mass spectrometry-based analysis of palmitoylation sites of in vitro palmitoylated rat brain tubulin. Protein J, 2010, 29: 531–537

    Article  CAS  Google Scholar 

  111. Drisdel RC, Green WN. Labeling and quantifying sites of protein palmitoylation. BioTechniques, 2004, 36: 276–285

    CAS  Google Scholar 

  112. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics, 2010, 9: 54–70

    Article  CAS  Google Scholar 

  113. Yount JS, Moltedo B, Yang Y-Y, Charron G, Moran TM, Lopez CB, Hang HC. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol, 2010, 6: 610–614

    Article  CAS  Google Scholar 

  114. Merrick BA, Dhungana S, Williams JG, Aloor JJ, Peddada S, Tomer KB, Fessler MB. Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. DOI: 10.1074/mcp.M110.006007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Fierke.

Additional information

FIERKE Carol received her Ph.D. from the Department of Biochemstry (1984), Brandeis University. She was an NIH postdoctoral fellow at The Pennsylvania State University for three years and began her independent research career in the Biochemistry Department at Duke University Medical School where she was promoted to Associate Professor. She moved to the Chemistry Department at the University of Michigan in 1999 where she is now Department Chair and the Jerome and Isabella Karle Collegiate Professor of Chemistry and Professor of Biological Chemistry. Her research focuses on the mechanism of medically important enzymes. (photo by D.C. Goings).

GUAN XiaoMu graduated with a Chemistry B.S. degree from Peking University in 2006. She received her Ph.D. degree in Chemical Biology in 2011 with Professor Fierke at the University of Michigan. Her Ph.D. research focuses on characterizing the catalytic mechanism of yeast palmitoyltransferase Akr1p and the substrate selectivity of protein farnesyltransferase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, X., Fierke, C.A. Understanding protein palmitoylation: Biological significance and enzymology. Sci. China Chem. 54, 1888–1897 (2011). https://doi.org/10.1007/s11426-011-4428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4428-2

Keywords

Navigation