Skip to main content

Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane-[60]fullerene dyad as a novel electron acceptor

Abstract

A polyhedral oligomeric silsesquioxane-[60]fullerene (POSS-C60) dyad was designed and used as a novel electron acceptor for bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device configuration. The studies of time-resolved photoinduced absorption of the pristine thin film of poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis (2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl] (SiPCPDTBT) and the composite thin film of SiPCPDTBT:POSS-C60 indicated efficient electron transfer from SiPCPDTBT to POSS-C60 with inhibited back-transfer. BHJ PSCs made by SiPCPDTBT mixed with POSS-C60 yielded the power conversion efficiencies (PCEs) of 1.50%. Under the same operational conditions, PCEs observed from BHJ PSCs made by SiPCPDTBT mixed with [6,6]-phenyl-C61-butyric acid methyl ester were 0.92%. These results demonstrated that POSS-C60 is a potentially good electron acceptor for inverted BHJ PSCs.

This is a preview of subscription content, access via your institution.

References

  1. Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107(4): 1324–1338

    Article  Google Scholar 

  2. Thompson BC, Frechet JMJ. Organic photovoltaics — Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47(1): 58–77

    Article  CAS  Google Scholar 

  3. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia SJ, Williams SP. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22(34): 3839–3856

    Article  CAS  Google Scholar 

  4. Cai WZ, Gong X, Cao Y. Polymer solar cells: Recent development and possible routes for improvement in the performance. Sol Energ Mat Sol Cells, 2010, 94(2): 114–127

    Article  CAS  Google Scholar 

  5. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics, 2009, 3(5): 297–302

    Article  CAS  Google Scholar 

  6. Green MA, Emery K, Hishikwaw Y, Warta W. Solar cell efficiency tables. Prog Photovolt Res Appl, 2011, 19: 84–92

    Article  CAS  Google Scholar 

  7. de Jong MP, van IJzendoorn LJ, de Voigt MJA. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett, 2000, 77(14): 2255–2257

    Article  Google Scholar 

  8. Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley DDC, Durrant JR. Degradation of organic solar cells due to air exposure. Sol Energ Mat Sol Cells, 2006, 90(20): 3520–3530

    Article  CAS  Google Scholar 

  9. Sahin Y, Alem S, de Bettignies R, Nunzi JM. Development of air stable polymer solar cells using an inverted gold on top anode structure. Thin Solid Film, 2005, 476(2): 340–343

    Article  CAS  Google Scholar 

  10. Li G, Chu CW, Shrotriya V, Huang J, Yang Y. Efficient inverted polymer solar cells. Appl Phys Lett, 2006, 88: 253503–253505

    Article  Google Scholar 

  11. Wei QS, Nishizawa T, Tajima K, Hashimoto K. Self-organized buffer layers in organic solar cells. Adv Mater, 2008, 20: 2211–2216

    Article  CAS  Google Scholar 

  12. Wei QS, Tajima K, Tong YJ, Ye S, Hashimoto K. Surface-segregated monolayers: A new type of ordered monolayer for surface modification of organic semiconductors. J Am Chem Soc, 2009, 131(48): 17597–17604

    Article  CAS  Google Scholar 

  13. Wang C-L, Zhang W-B, Van Horn RM, Tu Y, Gong X, Cheng SZD, Sun Y, Tong M, Seo J, Hsu BBY, Heeger AJ. A porphyrin-fullerene dyad with a supramolecular “double-cable” structure as a novel electron acceptor for bulk heterojunction polymer solar cells. Adv Mater, 2011, 23: 2951–2956

    Article  CAS  Google Scholar 

  14. Wang CL, Zhang WB, Hsu CH, Sun HJ, Van Horn RM, Tu YF, Anokhin DV, Ivanov DA, Cheng SZD. A supramolecular structure with an alternating arrangement of donors and acceptors constructed by a trans-di-C60-substituted Zn porphryin derivative in the solid state. Soft Matter, 2011, 7(13): 6135–6143

    Article  CAS  Google Scholar 

  15. Sun H-J, Tu Y, Wang C-L, Van Horn RM, Tsai C-C, Graham MJ, Sun B, Lotz B, Zhang W-B, Cheng SZD. Hierarchical structure and polymorphism of a sphere-cubic shape amphiphile based on a polyhedral oligomeric silsesquioxane-[60]fullerene conjugate. J Mater Chem, 2011, DOI: 10.1039/c1jm10954e

  16. Tong MH, Cho S, Rogers JT, Schmidt K, Hsu BBY, Moses D, Coffin RC, Kramer EJ, Bazan GC, Heeger AJ. Higher molecular weight leads to improved photoresponsivity, charge transport and interfacial ordering in a narrow bandgap semiconducting polymer. Adv Funct Mater, 2010, 20: 3959–3965

    Article  CAS  Google Scholar 

  17. Lickiss PD, Rataboul F. Fully condensed polyhedral oligosilsesquioxanes(POSS): From synthesis to application. Adv Organomet Chem, 2008, 57: 1–116

    Article  CAS  Google Scholar 

  18. Xiao S, Nguyen M, Gong X, Cao Y, Wu HB, Moses D, Heeger AJ. Stabilization of semiconducting polymers with silsesquioxane. Adv Funct Mater, 2003, 13: 25–29

    Article  CAS  Google Scholar 

  19. Kadish KM, Ruoff RS. Fullerenes: Chemistry, Physics, and Technology. New York: Wiley-Interscience, 2000

    Google Scholar 

  20. Zhang W-B, Li Y, Li X, Dong X, Yu X, Wang C-L, Wesdemiotis C, Quirk RP, Cheng SZD. Synthesis of shape amphiphiles based on functional polyhedral oligomeric silsesquioxane end-capped poly(l-lactide) with diverse head surface chemistry. Macromolecules, 2011, 44: 2589–2596

    Article  CAS  Google Scholar 

  21. Salaneck WR, Logdlund M, Fahlman M, Greczynski G, Kugler T. The electronic structure of polymer-metal interfaces studied by ultraviolet photoelectron spectroscopy. Mat Sci Eng R, 2001, 34: 121–146

    Article  Google Scholar 

  22. Seo JH, Nguyen TQ. Electronic properties of conjugated polyelectrolyte thin films. J Am Chem Soc, 2008, 130: 10042–10043

    Article  CAS  Google Scholar 

  23. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater, 2007, 6: 497–500

    Article  CAS  Google Scholar 

  24. Yang TB, Cai WZ, Qin DH, Wang EG, Lan LF, Gong X, Peng JB, Cao Y. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J Phys Chem C, 2010, 114: 6849–6853

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Gong or Stephen Z. D. Cheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, WB., Tu, Y., Sun, HJ. et al. Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane-[60]fullerene dyad as a novel electron acceptor. Sci. China Chem. 55, 749–754 (2012). https://doi.org/10.1007/s11426-011-4422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4422-8

Keywords