Skip to main content
Log in

Development of cation exchanger-based nano-CdS hybrid catalyst for visible-light photodegradation of rhodamine B from water

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new polymeric nanocomposite photocatalyst A15-CdS with large spherical beads (0.70–0.80 mm in diameter) was fabricated for efficient Rhodamine B (RhB) photodegradation with facile separation during cyclic runs, and photocorrosion, a congenital drawback of CdS, was successfully inhibited for A15-CdS. The nanocomposite catalyst was obtained by impregnating CdS nanoparticles within porous polymeric cation exchanger A15 through a facile inner-surface deposition. CdS nanoparticles (<20 nm) immobilized in A15 were deliberately distributed within an outside ring-like region of 40–50 μm in depth, which is dominant for photoreaction because visible light is not expected to permeate through the inner region of nontransparent A15. As expected, efficient RhB photodegradation by A15-CdS was achieved under visible light irradiation, and large-size A15-CdS beads are expected to result in their facile separation from solution for repeated use. More significantly, negligible photocorrosion for the hybrid catalyst A15-CdS was demonstrated by the constant photodegradation efficiency and negligible CdS loss during five-cycle runs. The results indicated that nano-CdS immobilization within A15 would greatly improve the applicability of CdS nanoparticles in practical environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev, 1993, 93(2): 671–698

    Article  CAS  Google Scholar 

  2. Huang BC, Yang Y, Chen XS, Ye DQ. Preparation and characterization of CdS-TiO2 nanoparticles supported on multi-walled carbon nanotubes. Catal Commun, 2010, 11: 844–847

    Article  CAS  Google Scholar 

  3. Hirai T, Okubo H, Komasawa I. Incorporation of CdS nanoparticles formed in reverse micelles into silica matrices via a sol-gel process: preparation of nano-CdS containing silica colloids and silica glass. J Mater Chem, 2000, 10: 2592–2596

    Article  CAS  Google Scholar 

  4. Linsebigler AL, Lu G, Yates Jr JT. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95(3): 735–758

    Article  CAS  Google Scholar 

  5. Tasbihi M, Ngah CR, Aziz N, Mansor A, Abdullah AZ, Teong LK, Mohamed AR. Lifetime and regeneration studies of various supported TiO2 photocatalysts for the degradation of phenol under UV-C light in a batch reactor. Ind Eng Chem Res, 2007, 46(26): 9006–9014

    Article  CAS  Google Scholar 

  6. Xie TH, Lin J. Origin of photocatalytic deactivation of TiO2 film coated on ceramic substrate. J Phys Chem C, 2007, 111(27): 9968–9974

    Article  CAS  Google Scholar 

  7. Raja P, Bandara J, Giordano P, Kiwi J. Innovative supported composite photocatalyst for the oxidation of phenolic waters in reactor processes. Ind Eng Chem Res, 2005, 44(24): 8959–8967

    Article  CAS  Google Scholar 

  8. Benmami M, Chhor K, Kanaev AV. Supported nanometric titanium oxide sols as a new efficient photocatalyst. J Phys Chem B, 2005, 109(42): 19766–19771

    Article  CAS  Google Scholar 

  9. Wu TS, Wang KX, Li GD, Sun SY, Sun J, Chen JS. Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Appl Mater Interface, 2010, 2(2): 544–550

    Article  CAS  Google Scholar 

  10. Wang SM, Liu P, Wang XX, Fu XZ. Homogeneously distributed CdS nanoparticles in nafion membranes: Preparation, characterization, and photocatalytic properties. Langmuir, 2005, 21(25): 11969–11973

    Article  CAS  Google Scholar 

  11. Liu XW, Fang Z, Zhang XJ, Zhang W, Wei XW, Geng BY. Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts. Cryst Growth Des, 2009, 9(1): 197–202

    Article  CAS  Google Scholar 

  12. Lee JJ, Suh JK, Hong JS, Lee JM, Lee YS, Park JW. The synthesis of spherical activated carbons containing zinc and their photochemical activity. Carbon, 2008, 46: 1648–1655

    Article  CAS  Google Scholar 

  13. Han H, Bai R. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res, 2009, 48(6): 2891–2898

    Article  CAS  Google Scholar 

  14. Fu HB, Xu TG, Zhu SB, Zhu YF. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ Sci Technol, 2008, 42(21): 8064–8069

    Article  CAS  Google Scholar 

  15. Zhang LW, Cheng HY, Zong RL, Zhu YF. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys Chem C, 2009, 113(6): 2368–2374

    Article  Google Scholar 

  16. Zhang H, Zong RL, Zhu YF. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C, 2009, 113(111): 4605–4611

    Article  CAS  Google Scholar 

  17. Zhang H, Zhu YF. Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. J Phys Chem C, 2010, 114(13): 5822–5826

    Article  CAS  Google Scholar 

  18. Zhang H, Zong RL, Zhao JC, Zhu YF. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol, 2008, 42(10): 3803–3807

    Article  CAS  Google Scholar 

  19. Sarkar S, Blaney LM, Gupta A, Ghosh D, Sengupta AK. Arsenic removal from groundwater and its safe containment in a rural environment: Validation of a sustainable approach. Environ Sci Technol, 2008, 42(12): 4268–4273

    Article  CAS  Google Scholar 

  20. Lenoble V, Chabroullet C, Shukry R, Serpaud B, Deluchat V, Bollinger JC. Dynamic arsenic removal on a MnO2-loaded resin. J Colloid Interf Sci, 2004, 280: 62–67

    Article  CAS  Google Scholar 

  21. Möller T, Sylvester P. Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res, 2008, 42: 1760–1766

    Article  Google Scholar 

  22. Iesan CM, Capat C, Ruta F, Udrea I. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal 349l process from drinking water. Water Res, 2008, 42: 4327–4333

    Article  CAS  Google Scholar 

  23. Bao XH. Catalytic characters of the nano-confined systems. Sci China Ser B-Chem, 2009, 39(10): 1125–1133

    Google Scholar 

  24. Cumbal L, Sengupta A. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of donnan membrane effect. Environ Sci Technol, 2005, 39(17): 6508–6515

    Article  CAS  Google Scholar 

  25. Priya MH, Madras G. Kinetics of TiO2-catalyzed ultrasonic degradation of Rhodamine dyes. Ind Eng Chem Res, 2006, 45(3): 913–921

    Article  CAS  Google Scholar 

  26. He BL, Huang WQ. Ion Exchanger and Adsorptive Resin. Shanghai: Sci Technol Edu, 1985

    Google Scholar 

  27. Fu HB, Pan CS, Yao WQ, Zhu YF. Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6. J Phys Chem B, 2005, 109(47): 22432–22439

    Article  CAS  Google Scholar 

  28. Heroux D, Ponce A, Cingarapu S, Klabunde KJ. Nanoparticles prepared by salt vapor-solvent vapor condensation and controlled nucleation: metal sulfides (ZnS, CdS, CdSe, PbS), and metal halide (LiF). Size, aggregates, structures, digestive ripening, superlattices, and impregnations. Adv Funct Mater, 2007, 17: 3562–3568

    Article  CAS  Google Scholar 

  29. Xiong SL, Xi BJ, Qian YT. CdS hierarchical nanostructures with tunable morphologies: Preparation and photocatalytic properties. J Phys Chem C, 2010, 114(33): 14029–14035

    Article  CAS  Google Scholar 

  30. Yu K, Yang SG, He H, Sun C, Gu CG, Ju YM. Visible light-driven photocatalytic degradation of Rhodamine B over NaBiO3: Pathways and mechanism. J Phys Chem A, 2009, 113(37): 10024–10032

    Article  CAS  Google Scholar 

  31. Meissner D, Memming R. Photoelectrochemistry of cadmium sulfide. 1. reanalysis of photocorrosion and flat-band potential. J Phys Chem C, 1988, 92(12): 3476–3483

    Article  CAS  Google Scholar 

  32. Jang J, Kim S, Lee KJ. Fabrication of CdS/PMMA core/shell nanoparticles by dispersion mediated interfacial polymerization. Chem Commun, 2007, 2689–2691

  33. Ryu SY, Balcerski W, Lee TK, Hoffmann MR. Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C, 2007, 111(49): 18195–18203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Lv or BingCai Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Lv, L., Li, M. et al. Development of cation exchanger-based nano-CdS hybrid catalyst for visible-light photodegradation of rhodamine B from water. Sci. China Chem. 55, 409–415 (2012). https://doi.org/10.1007/s11426-011-4416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4416-6

Keywords

Navigation