Skip to main content
Log in

Novel supramolecular organocatalysts of hydroxyprolinamide based on calix[4]arene scaffold for the enantioselective Biginelli reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of novel supramolecular organocatalysts of hydroxyprolinamide based on the upper rim of calix[4]arene scaffold have been developed to catalyze enantioselective multi-component Biginelli reaction. Under the optimal conditions, the reactions occurred with moderate-to-excellent enantioselectivities (up to 98% ee). A plausible transition state constructed by the supramolecular interaction of hydrogen bond and cation-π between catalysts and substrates has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schreiner PR. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev, 2003, 32: 289–296

    Article  CAS  Google Scholar 

  2. Cacciapaglia, R, Stefano SD, Mandolini L. Effective molarities in supramolecular catalysis of two-substrate reactions. Acc Chem Res, 2004, 37: 113–122

    Article  CAS  Google Scholar 

  3. Kovbasyuk L, Krämer R. Allosteric supramolecular receptors and catalysts. Chem Rev, 2004, 104: 3161–3187

    Article  CAS  Google Scholar 

  4. Gianneschi NC, Masar III MS, Mirkin CA. Development of a coordination chemistry-based approach for functional supramolecular structures. Acc Chem Res, 2005, 38: 825–837

    Article  CAS  Google Scholar 

  5. Hoogenboom R, Schubert US. The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques. Chem Soc Rev, 2006, 35: 622–629

    Article  CAS  Google Scholar 

  6. Hattori G, Hori T, Miyake Y, Nishibayashi Y. Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: Application to rhodium-catalyzed enantioselective hydrogenation of enamides. J Am Chem Soc, 2007, 129: 12930–12931

    Article  CAS  Google Scholar 

  7. Laungani AC, Slattery JM, Krossing I, Breit B. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel b-sheet structures and application in asymmetric catalysis. Chem Eur J, 2008, 14: 4488–4502

    Article  CAS  Google Scholar 

  8. Clarke ML, Fuentes JA. Self-assembly of organocatalysts: Fine-tuning organocatalytic reactions. Angew Chem Int Ed, 2007, 46: 930–933

    Article  CAS  Google Scholar 

  9. Reis Ö, Eymur S, Reis B, Demir AS. Direct enantioselective aldol reactions catalyzed by a proline-thiourea host-guest complex. Chem Commun, 2009, 1088–1090

  10. Böhmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed, 1995, 34: 713–745

    Article  Google Scholar 

  11. Ikeda A, Shinkai S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem Rev, 1997, 97: 1713–1734

    Article  CAS  Google Scholar 

  12. Casnati A, Sansone F, Ungaro R. Peptido- and glycocalixarenes: Playing with hydrogen bonds around hydrophobic cavities. Acc Chem Res, 2003, 36: 246–254

    Article  CAS  Google Scholar 

  13. Oueslati I. Calix(aza)crowns: Synthesis, recognition, and coordination. Tetrahedron, 2007, 63: 10840–10851

    Article  CAS  Google Scholar 

  14. Homden DM, Redshaw C. The use of calixarenes in metal-based catalysis. Chem Rev, 2008, 108: 5086–5130

    Article  CAS  Google Scholar 

  15. Sliwa W, Deska M. Calixarene complexes with soft metal ions. ARKIVOC, 2008, i: 87–127

    Google Scholar 

  16. Xu ZX, Li GK, Chen CF, Huang ZT. Inherently chiral calix[4]arenebased bifunctional organocatalysts for enantioselective aldol reactions. Tetrahedron, 2008, 64: 8668–8675

    Article  CAS  Google Scholar 

  17. Miao R, Xu ZX, Huang ZT, Chen CF. Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety: Synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde. Sci Chin Ser B Chem, 2009, 52: 505–512

    Article  CAS  Google Scholar 

  18. Li ZY, Chen JW, Liu Y, Xia W, Wang L. The use of calixarenes in asymmetric catalysis. Curr Org Chem, 2011, 15: 39–61

    Article  CAS  Google Scholar 

  19. Li ZY, Chen JW, Wang L, Pan Y. Highly enantioselective direct aldol reactions catalyzed by proline derivatives based on a calix[4]arene scaffold in the presence of water. Synlett, 2009, 2356–2360

  20. Li ZY, Lu CX, Huang G, Ma JJ, Sun H, Wang L, Pan Y. Novel prolinamide organocatalysts based on calix[4]arene scaffold for the enantioselective direct aldol reaction. Lett Org Chem, 2010, 7: 461–466

    Article  CAS  Google Scholar 

  21. Biginelli P. Aldehyde-urea derivatives of aceto- and oxaloacetic acids. Gazz Chim Ital, 1893, 23: 360–413

    Google Scholar 

  22. Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC. Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarbo xylic acid esters as orally effective antihypertensive agents. J Med Chem, 1991, 34: 806–811

    Article  CAS  Google Scholar 

  23. Rovnyak GC, Kimball SD, Beyer B, Cucinotta G, DiMarco JD, Gougoutas J, Hedberg A, Malley M, McCarthy JP, Zhang R, Moreland S. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J Med Chem, 1995, 38: 119–129

    Article  CAS  Google Scholar 

  24. Kappe CO. Biologically active dihydropyrimidones of the Biginellitype — A literature survey. Eur J Med Chem, 2000, 35: 1043–1052

    Article  CAS  Google Scholar 

  25. Kappe CO. The generation of dihydropyrimidine libraries utilizing biginelli multicomponent chemistry. QSAR Comb Sci, 2003, 22: 630–645

    Article  CAS  Google Scholar 

  26. Sadanandam YS, Shetty MM, Diwan PV. Synthesis and biological evaluation of new 3,4-dihydro-6-methyl-5-N-methyl-carbamoyl-4-(substituted phenyl)-2(1H)pyrimidinones and pyrimidinethiones. Eur J Med Chem, 1992, 27: 87–92

    Article  CAS  Google Scholar 

  27. Horton DA, Bourne GT, Smythe ML. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev, 2003, 103: 893–930

    Article  CAS  Google Scholar 

  28. Xin J, Chang L, Hou Z, Shang D, Liu X, Feng X. An enantioselective biginelli reaction catalyzed by a simple chiral secondary amine and achiral Brønsted acid by a dual-activation route. Chem Eur J, 2008, 14: 3177–3181

    Article  CAS  Google Scholar 

  29. Goss JM, Schaus SE. Enantioselective synthesis of SNAP-7941: Chiral dihydropyrimidone inhibitor of MCH1-R. J Org Chem, 2008, 73: 7651–7656

    Article  CAS  Google Scholar 

  30. González-Olvera R, Demare P, Regla I, Juaristi E. Application of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane derivatives in asymmetric organocatalysis: The biginelli reaction. ARKIVOC, 2008, vi: 61–72

    Google Scholar 

  31. Yadav LDS, Rai A, Rai VK, Awasthi C. Chiral ionic liquid-catalyzed Biginelli reaction: Stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron, 2008, 64: 1420–1429

    Article  CAS  Google Scholar 

  32. Gong LZ, Chen XH, Xu XY. Asymmetric organocatalytic biginelli reactions: A new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chem Eur J, 2007, 13: 8920–8926

    Article  CAS  Google Scholar 

  33. Chen XH, Xu XY, Liu H, Cun LF, Gong LZ. Highly enantioselective organocatalytic biginelli reaction. J Am Chem Soc, 2006, 128: 14802–14803

    Article  CAS  Google Scholar 

  34. Dondoni A, Massi A. Design and synthesis of new classes of heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc Chem Res, 2006, 39: 451–463

    Article  CAS  Google Scholar 

  35. Huang YJ, Yang FY, Zhu CJ. Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines. J Am Chem Soc, 2005, 127: 16386–16387

    Article  CAS  Google Scholar 

  36. Muñoz-Muñiz O, Juaristi E. An enantioselective approach to the Biginelli dihydropyrimidinone condensation reaction using CeCl3 and InCl3 in the presence of chiral ligands. ARKIVOC, 2003, xi: 16–26

    Google Scholar 

  37. Dondoni A, Massi A, Sabbatini S, Bertolasi V. Three-component biginelli cyclocondensation reaction using C-glycosylated substrates. Preparation of a collection of dihydropyrimidinone glycoconjugates and the synthesis of C-glycosylated monastrol analogues. J Org Chem, 2002, 67: 6979–6994

    Article  CAS  Google Scholar 

  38. Li ZY, Ma JJ, Chen JW, Pan Y, Jiang J, Wang L. High-performance liquid chromatography study of the nitration course of tetrabutoxycalix[4]arene at the upper rim: Determination of the optimum conditions for the preparation of 5,11,17-trinitro-25,26,27,28-tetrabutoxycalix[4]arene. Chin J Chem, 2009, 27: 2031–2036

    Article  CAS  Google Scholar 

  39. Shaabani A, Bazgir A, Teimouri F. Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solventfree conditions. Tetrahedron Lett, 2003, 44: 857–859

    Article  CAS  Google Scholar 

  40. Ishihara S, Takeoka S. Host-guest assembly of pyridinium-conjugated calix[4]arene via cation-π interaction. Tetrahedron Lett, 2006, 47: 181–184

    Article  CAS  Google Scholar 

  41. Pappalardo S, Villari V, Slovak S, Cohen Y, Gattuso G, Notti A, Pappalardo A, Pisagatti I, Parisi MF. Counterion-dependent protondriven self-assembly of linear supramolecular oligomers based on amino-calix[5]arene building blocks. Chem Eur J, 2007, 13: 8164–8173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoQiang Sun or JuLi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Xing, H., Huang, G. et al. Novel supramolecular organocatalysts of hydroxyprolinamide based on calix[4]arene scaffold for the enantioselective Biginelli reaction. Sci. China Chem. 54, 1726–1734 (2011). https://doi.org/10.1007/s11426-011-4374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4374-z

Keywords

Navigation