Skip to main content
Log in

Gold nanolabels and enzymatic recycling dual amplification-based electrochemical immunosensor for the highly sensitive detection of carcinoembryonic antigen

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A sensitive electrochemical immunoassay system for the detection of a protein tumor biomarker through a dual amplified strategy was reported. Firstly, this protocol involves in the electropolymerization of o-aminobenzoic acid (o-ABA) on a glass carbon electrode (GCE). Subsequently, capture anti-CEA (Ab1) is covalently linked to poly(o-ABA) (PAB) film, via N-(3-dimethylamminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysulfosuccinimid sodium salt (NHS) activation of the carboxyl groups and surface blocking with ethanolamine. Later, the target, carcinoembryonic antigen (CEA), is sandwiched between an electrode surface confined Ab1 and the alkaline phosphatase-labeled signal anti-CEA antibodies conjugated with gold nanoparticles (Ab2-ALP-AuNP bioconjugates). The dual biocatalytic signal amplification for CEA monitoring is achieved by coupling the numerous enzymes loaded on the AuNPs with redox-recycling of the enzymatic products in the presence of the secondary enzyme and the corresponding substrate. The novel dramatic signal amplification strategy, exhibits a good linearity at the studied concentration range from 0.005 to 50 ng mL−1 towards CEA with a detection limit of 2 pg mL−1 (S/N=3). There is a 5–100-fold improvement in detection limit compared to other similar studies. The developed dual signal amplified strategy shows good selectivity, regeneration, stability and acceptable reproducibility. Therefore, the signal amplification approach holds great potential applications in detection of ultra-trace protein biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem, 2007, 26(7): 679–688

    Article  CAS  Google Scholar 

  2. Kawabata T, Watanabe M, Nakamura K, Satomura S. Liquid-phase binding assay of α-fetoprotein using DNA-coupled antibody and capillary chip electrophoresis. Anal Chem, 2005, 77(17): 5579–5582

    Article  CAS  Google Scholar 

  3. Li X, Yang X, Zhang S. Electrochemical enzyme immunoassay using model labels. Trends Anal Chem, 2008, 27(6): 543–553

    Article  Google Scholar 

  4. Aguilar Z, Vandaveer W, Fritsch I. Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system. Anal Chem, 2002, 74(14): 3321–3329

    Article  CAS  Google Scholar 

  5. Xiang Y, Zhang Y, Chang Y, Chai Y, Wang J, Yuan R. Reversemicelle synthesis of electrochemically encoded quantum dot barcodes: application to electronic coding of a cancer marker. Anal Chem, 2010, 82(3): 1138–1141

    Article  CAS  Google Scholar 

  6. Wang J, Liu G, Jan M. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc, 2004, 126(10): 3010–3011

    Article  CAS  Google Scholar 

  7. Munge B, Liu G, Collins G, Wang J. Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal Chem, 2005, 77(14): 4662–4666

    Article  CAS  Google Scholar 

  8. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Sang J, Kim N, Gillespie J, Gutkind J, Papadimitrakopoulos F, Rusling J. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc, 2006, 128(34): 11199–11205

    Article  CAS  Google Scholar 

  9. Tsai T, Heckert G, Neves L, Tan Y, Kao D, Harrison R, Resasco D, Schmidtke D. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal Chem, 2009, 81(19): 7917–7925

    Article  CAS  Google Scholar 

  10. Lai G, Yan F, Ju H. Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem, 2009, 81(23): 9730–9736

    Article  CAS  Google Scholar 

  11. Malhotra R, Patel V, Vaque J, Gutkind J, Rusling J. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem, 2010, 82(8): 3118–3123

    Article  CAS  Google Scholar 

  12. Tang D, Yuan R, Chai Y. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem, 2008, 80(5): 1582–1588

    Article  CAS  Google Scholar 

  13. Wang J, Liu G, Lin Y. Electroactive silica nanoparticles for biological labeling. Small, 2006, 2(10): 1134–1138

    Article  CAS  Google Scholar 

  14. Zhong Z, Li M, Xiang D, Dai N, Qing Y, Wang D, Tang D. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels. Biosens Bioelectron, 2009, 24(7): 2246–2249

    Article  CAS  Google Scholar 

  15. Wang J, Li J, Baca A, Hu J, Zhou F, Yan W, Pang D. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem, 2003, 75(15): 3941–3945

    Article  CAS  Google Scholar 

  16. Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small, 2005, 1(11): 1036–1043

    Article  CAS  Google Scholar 

  17. Qiu F, Jiang D, Ding Y, Zhu J, Huang L. Monolayer-barcoded nanoparticles for on-chip DNA hybridization assay. Angew Chem Int Ed, 2008, 47(27): 5009–5012

    Article  CAS  Google Scholar 

  18. Yang X, Guo Y, Bi S, Zhang S. Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of α-fetoprotein amplified by double-codified gold nanoparticles labels. Biosens Bioelectron, 2009, 24(8): 2707–2711

    Article  CAS  Google Scholar 

  19. Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron, 2010, 25(10): 2379–2383

    Article  CAS  Google Scholar 

  20. Ho J, Chang H, Shih N, Wu L, Chang Y, Chen C, Chou C. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal Chem, 2010, 82(14): 5944–5950

    Article  CAS  Google Scholar 

  21. Ding C, Ge Y, Lin J. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosens Bioelectron, 2010, 25(6): 1290–1294

    Article  CAS  Google Scholar 

  22. Ambrosi A, Castañeda M, Killard A, Alegret M, Merkoçi A. Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem, 2007, 79(14): 5232–5240

    Article  CAS  Google Scholar 

  23. Bi S, Yan Y, Yang X, Zhang S. Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem Eur J, 2009, 15(18): 4704–4709

    Article  CAS  Google Scholar 

  24. Xiang Y, Xie M, Bash R, Chen J, Wang J. Ultrasensitive label-free aptamer-based electronic detection. Angew Chem Int Ed, 2007, 46(47): 9054–9056

    Article  CAS  Google Scholar 

  25. Cissell K, Rahimi Y, Shrestha S, Hunt E, Deo S. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem, 2008, 80(7): 2319–2325

    Article  CAS  Google Scholar 

  26. Zhao W, Ali M, Brook M, Li Y. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed, 2008, 47(34): 6330–6337

    Article  CAS  Google Scholar 

  27. Ali M, Li Y. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew Chem Int Ed, 2009, 48(19): 3512–3515

    Article  CAS  Google Scholar 

  28. Cheng W, Yan F, Ding L, Ju H, Yin Y. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem, 2010, 82(8): 3337–3342

    Article  CAS  Google Scholar 

  29. Ou L, Liu S, Chu X, Shen G, Yu R. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Anal Chem, 2009, 81(23): 9664–9673

    Article  CAS  Google Scholar 

  30. Kwon S, Yang H, Jo K, Kwak J. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes. Analyst, 2008, 133(11): 1599–1604

    Article  CAS  Google Scholar 

  31. Campàs M, Iglesia P, Berre M, Kane M, Diogène J, Marty J. Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish. Biosens Bioelectron, 2008, 24(4): 716–722

    Article  Google Scholar 

  32. Murielle R, Naïma D, Benoît L, Pierre B. Bienzymatic-based electrochemical DNA biosensors: a way to lower the detection limit of hybridization assays. Analyst, 2009, 134(2): 349–353

    Article  Google Scholar 

  33. Xiang Y, Zhang Y, Qian X, Chai Y, Wang J, Yuan R. Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosens Bioelectron, 2010, 25(11): 2539–2542

    Article  CAS  Google Scholar 

  34. Li Q, Tang D, Tang J, Su B, Huang J, Chen G. Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids. Talanta, 2011, 84(2): 538–546

    Article  CAS  Google Scholar 

  35. Wu W, Yi P, He P, Jing T, Liao K, Yang K, Wang H. Nanosilverdoped DNA polyion complex membrane for electrochemical immunoassay of carcinoembryonic antigen using nanogold-labeled secondary antibodies. Anal Chim Acta, 2010, 673(2): 126–132

    Article  CAS  Google Scholar 

  36. Song Z, Yuan R, Chai Y, Jiang W, Su H, Che X, Ran X. Simultaneous immobilization of glucose oxidase on the surface and cavity of hollow gold nanospheres as labels for highly sensitive electrochemical immunoassay of tumor marker. Biosens Bioelectron, 2011, 26(5): 2776–2780

    Article  CAS  Google Scholar 

  37. Grabar K, Freeman R, Hommer M, Natan M. Preparation and characterization of Au colloid monolayers. Anal Chem, 1995, 67(4): 735–743

    Article  CAS  Google Scholar 

  38. Ambrosi A, Castaňeda M, Killard A, Smyth M, Alegret S, Merkoci A. Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem, 2007, 79(14): 5232–5240

    Article  CAS  Google Scholar 

  39. Qian J, Zhang C, Cao X, Liu S. Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal Chem, 2010, 82(15): 6422–6429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Xiang or Ruo Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xiang, Y., Chai, Y. et al. Gold nanolabels and enzymatic recycling dual amplification-based electrochemical immunosensor for the highly sensitive detection of carcinoembryonic antigen. Sci. China Chem. 54, 1770–1776 (2011). https://doi.org/10.1007/s11426-011-4373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4373-0

Keywords

Navigation