Skip to main content
Log in

A new type of covalent-functional graphene donor-acceptor hybrid and its improved photoelectrochemical performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Graphene has lots of applications, such as field-effect transistors, solar cells and transparent electrodes. In this work, we developed a new donor-acceptor graphene hybrid by covalently bonding a donor phenanthrene-9-carboxaldehyde (PCA) onto the acceptor graphene (PCA-graphene) via 1,3-dipolar cycloaddition azomethine ylides. The resulting PCA-graphene is soluble in N,N-dimethyformamide (DMF). The optoelectronic device (photoanode) fabricated by spin-coating DMF solution of the hybrids exhibits an enhanced photocurrent under visible irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  3. Henrichsen HH, Boggild P. Graphene electrodes for n-type organic field-effect transistors. Microelectron Eng, 2010, 87: 1120–1122

    Article  CAS  Google Scholar 

  4. Sui Y, Appenzeller J. Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett, 2009, 9: 2973–2977

    Article  CAS  Google Scholar 

  5. Tseng F, Unluer D, Holcomb K, Stan MR, Ghosh AW. Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors. Appl Phys Lett, 2009, 94: 223112-223112–3

    Article  Google Scholar 

  6. Valentini L, Cardinali M, Bon SB, Bagnis D, Verdejo R, Lopez-Manchado MA, Kenny JM. Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem, 2010, 20: 995–1000

    Article  CAS  Google Scholar 

  7. Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8: 323–327

    Article  CAS  Google Scholar 

  8. Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ. Roomtemperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803

    Article  Google Scholar 

  9. Wu JB, Becerril HA, Bao ZN, Liu ZF, Chen YS, Peumans P. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 2008, 92: 263302

    Article  Google Scholar 

  10. Xia FN, Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett, 2010, 10: 715–718

    Article  CAS  Google Scholar 

  11. Yang NL, Zhai J, Wang D, Chen YS, Jiang L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dyesensitized solar cells. ACS Nano, 2010, 4: 887–894

    Article  CAS  Google Scholar 

  12. Yin B, Liu Q, Yang LY, Wu XM, Liu ZF, Hua YL, Yin SG, Chen YS. Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. J Nanosci Nanotech, 2010, 10: 1934–1938

    Article  CAS  Google Scholar 

  13. Maggini M, Scorrano G, Prato M. Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc, 1993, 115: 9798–9799

    Article  CAS  Google Scholar 

  14. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc, 2002, 124: 760–761

    Article  CAS  Google Scholar 

  15. Quintana M, Spyrou K, Grzelczak M, Browne WR, Rudolf P, Prato M. Functionalization of graphene via 1,3-dipolar cycloaddition. ACS nano, 2010, 4: 3527–3533

    Article  CAS  Google Scholar 

  16. Zhong X, Jin J, Li SW, Niu ZY, Hu WQ, Li R, Ma JT. Aryne cycloaddition: Highly efficient chemical modification of grapheme. Chem Commu, 2010, 46: 7340–7342

    Article  CAS  Google Scholar 

  17. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339–1339

    Article  CAS  Google Scholar 

  18. Pramoda KP, Hussain H, Koh HM, Tan HR, He CB. Covalent bonded polymer-graphene nanocomposites. J Polymer Sci Part A-Polymer Chem, 2010, 48: 4262–4267

    Article  CAS  Google Scholar 

  19. Shan CS, Yang HF, Han DX, Zhang QX, Ivaska A, Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir, 2009, 25: 12030–12033

    Article  CAS  Google Scholar 

  20. Liu QH, Fu Q, Yang J, Ma JC, Li WL, Wang X. Synthesis, characterization and photophysical properties of novel tetrasubstituted phthalocyaninato zinc derivatives. J Mol Struct, 2010, 963: 41–44

    Article  CAS  Google Scholar 

  21. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CCM. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Inter, 2010, 2: 3092–3099

    Article  CAS  Google Scholar 

  22. Xu YF, Liu ZB, Zhang XL, Wang Y, Tian JG, Huang Y, Ma YF, Zhang XY, Chen YS. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater, 2009, 21: 1275–1279

    Article  CAS  Google Scholar 

  23. Souza D, Chitta F, Sandanayaka R, Subbaiyan ASD, D’souza NK, Araki L, Ito YO. Supramolecular carbon nanotube-fullerene donor-acceptor hybrids for photoinduced electron transfer. J Am Chem Soc, 2007, 129: 15865–15871

    Article  Google Scholar 

  24. Tang YB, Lee CS, Xu J, Liu ZT, Chen ZH, He ZB, Cao YL, Yuan GD, Song HS, Chen LM, Luo LB, Cheng HM, Zhang WJ, Bello I, Lee ST. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 2010, 4: 3482–3488

    Article  CAS  Google Scholar 

  25. Manga KK, Zhou Y, Yan YL, Loh KP. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv Funct Mater, 2009, 19: 3638–3643

    Article  CAS  Google Scholar 

  26. Zhang H, Lv XJ, Li YM, Wang Y, Li JH. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2009, 4: 380–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChunCheng Chen or JinCai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Yu, C., Chen, C. et al. A new type of covalent-functional graphene donor-acceptor hybrid and its improved photoelectrochemical performance. Sci. China Chem. 54, 1622–1626 (2011). https://doi.org/10.1007/s11426-011-4366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4366-z

Keywords

Navigation