Skip to main content
Log in

Porous coordination polymers based on three planar rigid ligands

  • Reviews
  • Special Topic · Coordination Polymer
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

During the last two decades, porous coordination polymers (PCPs), usually called as metal-organic frameworks (MOFs), have been developed rapidly due to their versatile structural diversities and potential physical and chemical functions. This article provides a short review of recent advances in the design and constructions of porous coordination polymers based on three planar rigid ligands, including imidazole-4,5-dicarboxlate (H3IDC), 1H-tetrazole (HTz), as well as 1H-tetrazole-5-carboxylate (H2Tzc). Their preparations, crystal structures, and desirable properties have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuang XF, Wu XY, Yu RM, Donahue JP, Huang JS, Lu CZ. Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages. Nature Chem, 2010, 2: 461–465

    Article  CAS  Google Scholar 

  2. Zhang ZM, Yao S, Li YG, Clerac R, Lu Y, Su ZM, Wang EB. Protein-sized chiral Fe-168 cages with NbO-type topology. J Am Chem Soc, 2009, 131: 14600–14601

    Article  CAS  Google Scholar 

  3. Huang XC, Lin YY, Zhang JP, Chen XM. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45: 1557–1559

    Article  CAS  Google Scholar 

  4. Mohideen MIH, Xiao B, Wheatley PS, McKinlay AC, Li Y, Slawin AMZ, Aldous DW, Cessford NF, Duren T, Zhao XB, Gill R, Thomas KM, Griffin JM, Ashbrook SE, Morris RE. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework. Nature Chem, 2011, 3: 304–310

    Article  CAS  Google Scholar 

  5. Park HJ, Cheon YE, Suh MP. Post-synthetic reversible incorporation of organic linkers into porous metal-organic frameworks through single-crystal-to-single-crystal transformations and modification of gas-sorption properties. Chem Eur J. 2010, 16: 11662–11669

    Article  CAS  Google Scholar 

  6. Matsuda R, Tsujino T, Sato H, Kubota Y, Morishige K, Takata M, Kitagawa S. Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chem Sci, 2010, 1: 315–321

    Article  CAS  Google Scholar 

  7. Chandler BD, Enright GD, Udachin KA, Pawsey S, Ripmeester JA, Cramb DT, Shimizu GKH. Mechanical gas capture and release in a network solid via multiple single-crystalline transformations. Nature Mat, 2008, 7: 229–235

    Article  CAS  Google Scholar 

  8. Corma A, Garcia H, Xamena FXL. Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev, 2010, 110: 4606–4655

    Article  CAS  Google Scholar 

  9. Liu Y, Xuan WM, Cui Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mat, 2010, 22: 4112–4135

    Article  CAS  Google Scholar 

  10. Chen BL, Xiang SC, Qian GD. Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res, 2010, 43: 1115–1124

    Article  CAS  Google Scholar 

  11. Yoshida Y, Inoue K, Kurmoo M. Consecutive irreversible single-crystal to single-crystal and reversible single-crystal to glass transformations and associated magnetism of the coordination polymer, [MnII(rac-pnH)(H2O)CrIII(CN)6]·H2O. Inorg Chem, 2009, 48: 10726–10736

    Article  CAS  Google Scholar 

  12. Xiang SC, Wang X, Hu SM, Sheng TL. Cluster-based magnetic porous coordination polymers. Chin J Struct Chem, 2009, 28: 1349–1358

    CAS  Google Scholar 

  13. Kaneko W, Mito M, Kitagawa S, Ohba, M. One-dimensional coordination polymers from hexanuclear manganese carboxylate clusters featuring a {(Mn4Mn2 III)-MnII4-O2) core and spacer linkers. Chem Eur J, 2008, 14: 3481–3489

    Article  CAS  Google Scholar 

  14. Hou L, Zhang WX, Zhang JP, Xue W, Zhang YB, Chen XM. An octacobalt cluster based, (3,12)-connected, magnetic, porouscoordination polymer. Chem Commun, 2010, 46: 6311–6313

    Article  CAS  Google Scholar 

  15. Rocha J, Carlos LD, Almeida Paz FA, Ananias D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev, 2011, 40: 926–940

    Article  CAS  Google Scholar 

  16. Chen BL, Wang LB, Zapata F, Qian GD, Lobkovsky EB. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J Am Chem Soc, 2008, 130: 6718–6719

    Article  CAS  Google Scholar 

  17. Taylor KML, Jin A, Lin WB. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew Chem Int Ed, 2008, 47: 7722–7725

    Article  CAS  Google Scholar 

  18. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultra-high porosity in metal-organic frameworks. Science, 2010, 239: 424–428

    Article  Google Scholar 

  19. Uemura K, Kitagawa S, Fukui K, Saito K. A contrivance for a dynamic porous framework: Cooperative guest adsorption based on square grids connected by amide-amide hydrogen bonds. J Am Chem Soc, 2004, 126: 3817–3828

    Article  CAS  Google Scholar 

  20. Zhang J, Xue YS, Liang LL, Ren SB, Li YZ, Du HB, You XZ. Porous coordination polymers of transition metal sulfides with PtS topology built on a semirigid tetrahedral linker. Inorg Chem, 2010, 49: 7685–7691

    Article  CAS  Google Scholar 

  21. Zhang JP, Chen XM. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J Am Chem Soc, 2008, 130: 6010–6017

    Article  CAS  Google Scholar 

  22. Zhong RQ, Zou RQ, Xu Q. Solvent-induced deviation in square-grid layers of microporous Cu(II) isophthalates: layer stacking and gas adsorption properties. CrystEngComm, 2011, 13: 577–584

    Article  CAS  Google Scholar 

  23. Zhang MB, Zhang J, Zheng ST, Yang GY. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed, 2005, 44: 1385–1388

    Article  CAS  Google Scholar 

  24. Zeng MH, Feng XL, Chen XM. Crystal-to-crystal transformations of a microporous metal-organic laminated framework triggered by guest exchange, dehydration and readsorption. Dalton Trans, 2004, 2217–2223

  25. Bayón JC, Net G, Rasmussen PG, Kolowich B. Dinuclear rhodium and iridium complexes of dicarboxyimidazolates: crystal structure of [NBu4][(cod)Rh(dcbi)Rh(cod)]·2PriOH. Dalton Trans, 1987, 3003–3007

  26. Maji, TK, Mostafa G, Chang HC, Kitagawa S. Porous lanthanideorganic framework with zeolite-like topology. Chem. Commun. 2005, 2436–2438

  27. Sun YQ, Zhang J, Chen YM, Yang GY. Porous lanthanide-organic open frameworks with helical tubes constructed from interweaving triple-helical and double-helical chains. Angew Chem Int Ed, 2005, 44: 5814–5817

    Article  CAS  Google Scholar 

  28. Sun YQ, Yang GY. Organic-inorganic hybrid materials constructed from inorganic lanthanide sulfate skeletons and organic 4, 5-imida-zoledicarboxylic acid. Dalton Trans, 2007, 3771–3781

  29. Sun YQ, Zhang J, Yang GY. A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes. Chem Commun, 2006, 4700–4702

  30. Lu WG, Jiang L, Feng XL, Lu TB. Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange. Inorg Chem, 2009, 48: 6997–6999

    Article  CAS  Google Scholar 

  31. Lu WG, Jiang L, Lu TB. Lanthanide contraction and temperature dependent structures of lanthanide coordination polymers with imidazole-4,5-dicarboxylate and oxalate. Cryst Growth Des, 2010, 10: 4310–4318

    Article  CAS  Google Scholar 

  32. Gurunatha KL, Uemura K, Maji TK. Temperature- and stoichiometry-controlled dimensionality in a magnesium 4,5-imidazoledicar-boxylate system with strong hydrophilic pore surfaces. Inorg Chem, 2008, 47: 6578–6580

    Article  CAS  Google Scholar 

  33. Gu JZ, Lu WG, Jiang L, Zhou HC, Lu TB. 3D porous metal-organic framework exhibiting selective adsorption of water over organic solvents. Inorg Chem, 2007, 46: 5835–5837

    Article  CAS  Google Scholar 

  34. Lu WG, Jiang L, Feng XL, Lu TB. Three 3D coordination polymers constructed by Cd(II) and Zn(II) with imidazole-4,5-dicarboxylate and 4,4′-bipyridyl building blocks. Cryst Growth Des, 2006, 6: 564–571

    Article  CAS  Google Scholar 

  35. Lu WG, Jiang L, Feng XL, Lu TB. Four 3D porous metal-organic frameworks with various layered and pillared motifs. Cryst Growth Des, 2008, 8: 986–994

    Article  CAS  Google Scholar 

  36. Lu WG, Gu JZ, Jiang L, Tan MY, Lu TB. Three achiral and one chiral coordination polymers containing helical chains: the chirality transfer between the helical chains. Cryst Growth Des, 2008, 8: 192–199

    Article  CAS  Google Scholar 

  37. Li CJ, Hu S, Li W, Lam CK, Zheng YZ, Tong ML. Rational design and control of the dimensions of channels in three-dimensional, porous metal-organic frameworks constructed with predesigned hexagonal layers and pillars. Eur J Inorg Chem, 2006, 1931–1935

  38. Lu WG, Su CY, Lu TB, Jiang L, Chen JM. Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single-layer walls. J Am Chem Soc, 2006, 128: 34–35

    Article  CAS  Google Scholar 

  39. Liu Y, Kravtsov VC, Larsen R, Eddaoudi M. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. Chem Commun, 2006, 1488–1490

  40. Nouar F, Eckert J, Eubank JF, Forster P, Eddaoudi M. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J Am Chem Soc, 2009, 131: 2864–2870

    Article  CAS  Google Scholar 

  41. Alkordi MH, Liu Y, Larsen RW, Eubank JF, Eddaoudi M. Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. J Am Chem Soc, 2008, 130: 12639–12641

    Article  CAS  Google Scholar 

  42. Liu YL, Kravtsov V, Walsh RD, Poddar P, Srikanthc H, Eddaoudi M. Directed assembly of metal-organic cubes from deliberately predesigned molecular building blocks. Chem Commun, 2004, 2806–2807

  43. Zou RQ, Jiang L, Senoh H, Takeichi N, Xu Q. Rational assembly of a 3D metal-organic framework for gas adsorption with predesigned cubic building blocks and 1D open channels. Chem Commun, 2005. 3526–3528

  44. Zou RQ, Sakurai H, Xu Q. Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions. Angew Chem Int Ed, 2006, 45: 2542–2546

    Article  CAS  Google Scholar 

  45. Demko ZP, Sharpless KB. Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J Org Chem, 2001, 66: 7945–7950

    Article  CAS  Google Scholar 

  46. Demko ZP, Sharpless KB. An intramolecular [2+3] cycloaddition route to fused 5-heterosubstituted tetrazoles. 2001, Org Lett, 3: 4091–4094

    Article  CAS  Google Scholar 

  47. Cai Y, Ling CC, Bundle DR. Concise and efficient synthesis of 2-acetamido-2-deoxy-beta-D-hexopyranosides of diverse aminosugars from 2-acetamido-2-deoxy-beta-D-glucose. J Org Chem, 2009, 74: 580–589

    Article  CAS  Google Scholar 

  48. Singh H, Chawla AS, Kapoor VK, Paul D, Malhotra RK. Medicinal chemistry of tetrazoles. Prog Med Chem, 1980, 17: 151–183

    Article  CAS  Google Scholar 

  49. Ostrovskii VA, Pevzner MS, Kofmna TP, Shcherbinin MB, Tselinskii IV. Energetic 1,2,4-triazoles and tetrazoles synthesis, structure, and properties. Targets Heterocycl Syst, 1999, 3: 467–526

    CAS  Google Scholar 

  50. Zhong DC, Lu WG, Feng XL, Lu TB. Two organic-inorganic hybrids with unprecedented inorganic and organic connectivities. CrystEngComm, 2011, 13: 2201–2203

    Article  CAS  Google Scholar 

  51. Sengupta O, Mukherjee PS. Mixed azide and 5-(pyrimidyl) tetrazole bridged Co(II)/Mn(II) polymers: synthesis, crystal structures, ferroelectric and magnetic behavior. Inorg Chem, 2010, 49: 8583–8590

    Article  CAS  Google Scholar 

  52. Zhang XM, Zhao YF, Zhang WX, Chen XM. A tetrazolate- and cyano-bridged homometallic mixed-valence copper(I,II) molecular ferrimagnet. Adv Mater, 2007, 9: 2843–2846

    Article  Google Scholar 

  53. Wang XS, Tang YZ, Huang XF, Qu ZR, Che CM, Chan PWH, Xiong RG. Syntheses, crystal structures, and luminescent properties of three novel zinc coordination polymers with tetrazolyl ligands. Inorg Chem, 2005, 44: 5278–5285

    Article  CAS  Google Scholar 

  54. Carlucci L, Ciani G, Proserpio DM. Interpenetrated and noninterpenetrated three-dimensional networks in the polymeric species Ag(tta) and 2Ag(tta)·AgNO3 (tta = tetrazolate): The first examples of the µ41111 bonding mode for tetrazolate. Angew Chem Int Ed, 1999, 38: 3488–3492

    Article  CAS  Google Scholar 

  55. He X, Lu CZ, Yuan DQ. Two 3D porous cadmium tetrazolate frameworks with hexagonal tunnels. Inorg Chem, 2006, 45: 5760–5766

    Article  CAS  Google Scholar 

  56. Zhong DC, Lin JB, Lu WG, Jiang L, Lu TB. Strong hydrogen binding within a 3D microporous metal-organic framework. Inorg Chem, 2009, 48: 8656–8658

    Article  CAS  Google Scholar 

  57. Zhong DC, Lu WG, Jiang L, Feng XL, Lu TB. Three coordination polymers based on 1H-tetrazole (HTz) generated via in situ decarboxylation: synthesis, structures, and selective gas adsorption properties. Cryst Growth Des, 2010, 10: 739–746

    Article  CAS  Google Scholar 

  58. Zhong DC, Meng M, Zhu J, Yang GY, Lu TB. A highly-connected acentric organic-inorganic hybrid material with unique 3D inorganic and 3D organic connectivity. Chem Commun, 2010, 46: 4354–4356

    Article  CAS  Google Scholar 

  59. Jia QX, Wang YQ, Yue Q, Wang QL, Gao EQ. Isomorphous CoII and MnII materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours. Chem Comm, 2008, 4894–4896

  60. Rodriguez-Dieguez A, Mota AJ, Cano J, Ruiz J, Choquesillo-Lazarte D, Colacio E. Structure, magnetism and DFT studies of dinuclear and chain complexes containing the tetrazolate-5-carboxylate multidentate bridging ligand. Dalton Trans, 2009, 6335–6344

  61. Wu MF, Zheng FK, Wu AQ, Li Y, Wang MS, Zhou WW, Chen F, Guo GC, Huang JS. Hydrothermal syntheses, crystal structures and luminescent properties of zinc(II) coordination polymers constructed by bifunctional tetrazolate-5-carboxylate ligands. CrystEngComm, 2010, 12: 260–269

    Article  CAS  Google Scholar 

  62. Zhong DC, Zhang WX, Cao FL, Jiang L, Lu TB. A three-dimensional microporous metal-organic framework with large hydrogen sorption hysteresis. Chem Commun, 2011, 47: 1204–1206

    Article  CAS  Google Scholar 

  63. Tong XL, Hu TL, Zhao JP, Wang YK, Zhang H, Bu XH. Chiral magnetic metal-organic frameworks of MnII with achiral tetrazolate-based ligands by spontaneous resolution. Chem Commun, 2010, 46: 8543–8545

    Article  CAS  Google Scholar 

  64. Li Y, Xu G, Zou WQ, Wang MS, Zheng FK, Wu MF, Zeng HY, Guo GC, Huang JS. A novel metal-organic network with high thermal stability: Nonlinear optical and photoluminescent properties. Inorg Chem, 2008, 47: 7945–7947

    Article  CAS  Google Scholar 

  65. Tao J, Ma ZJ, Huang RB, Zheng LS, Synthesis and characterization of a tetrazolate-bridged coordination framework encapsulating D 2h -symmetric cyclic (H2O)4 cluster arrays. Inorg Chem, 2004, 43: 6133–6135

    Article  CAS  Google Scholar 

  66. DincĂ M, Yu AF, Long JR. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. J Am Chem Soc, 2006, 128: 8904–8913

    Article  Google Scholar 

  67. DincĂ M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc, 2006, 128: 16876–16883

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TongBu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, D., Lu, T. Porous coordination polymers based on three planar rigid ligands. Sci. China Chem. 54, 1395–1406 (2011). https://doi.org/10.1007/s11426-011-4358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4358-z

Keywords

Navigation