Skip to main content
Log in

Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation

  • Reviews
  • Special Topic · Coordination Polymer
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recently, research of crystalline-state transformation involving the removal/inclusion of guest molecules in porous coordination polymers (PCPs) was underway. Crystalline-state transformation, especially, single-crystal to single-crystal (SC-SC) transformation as new method for the direct observation of host-guest chemistry, can reveal the intrinsic relevance and interaction between the framework and guest molecules. This review describes our work concerning PCPs and recent investigations of others, within the last four years, from the viewpoint of crystalline-state transformations of PCPs on guest removal or inclusion processes. Ligand substitution reaction and postsynthetic modification of PCPs in SC-SC fashion which were distinguished from conventional crystalline-state transformation triggered by guest removal or exchange were highlighted in this review. The research status of crystalline-state transformation in China was briefly introduced as well. Series of structure analysis techniques including single-crystal X-ray diffraction, powder X-ray diffraction, neutron diffraction, inelastic neutron scattering as well as the application of synchrotron radiation light source will inevitably promote the advance of study of crystalline-state transformation. And as a hotspot, deep investigations of crystalline-state transformation also help us to overcome the challenge of achieving multifunction and the correlation among them, such as sorption, magnetism, optical or electrical properties simultaneously in PCPs and contribute to design stimulate-oriented porous intelligent materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Janiak C. Engineering coordination polymers towards applications. Dalton Trans, 2003, 14: 2781–2804

    Article  CAS  Google Scholar 

  2. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43: 2334–2375

    Article  CAS  Google Scholar 

  3. Czaja AU, Trukhan N, Müller U. Industrial applications of metal-organic frameworks. Chem Soc Rev, 2009, 38: 1284–1293

    Article  CAS  Google Scholar 

  4. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295: 469–472

    Article  CAS  Google Scholar 

  5. Wu CD, Hu A, Zhang L, Lin WB. A homochiral porous metalorganic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc, 2005, 127: 8940–8941

    Article  CAS  Google Scholar 

  6. Kurmoo M. Magnetic metal-organic frameworks. Chem Soc Rev, 2009, 38: 1353–1379

    Article  CAS  Google Scholar 

  7. Pan L, Olson DH, Ciemnolonski LR, Heddy R, Li J. Separation of hydrocarbons with a microporous metal-organic framework. Angew Chem Int Ed, 2006, 118: 632–635

    Google Scholar 

  8. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329: 424–428

    Article  CAS  Google Scholar 

  9. Uemura T, Yanaia N, Kitagawa S. Polymerization reactions in porous coordination polymers. Chem Soc Rev, 2009, 38: 1228–1236

    Article  CAS  Google Scholar 

  10. Murray LJ, Dincă M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev, 2009, 38: 1294–1314

    Article  CAS  Google Scholar 

  11. Férey G. Hybrid porous solids: Past, present, future. Chem Soc Rev, 2008, 37: 191–214

    Article  CAS  Google Scholar 

  12. Zhao D, Timmons DJ, Yuan DQ, Zhou HC. Tuning the topology and functionality of metal-organic frameworks by ligand design. Acc Chem Res, 2011, 44: 123–133

    Article  CAS  Google Scholar 

  13. Lin JB, Zhang JP, Chen XM. Nonclassical active site for enhanced gas sorption in porous coordination polymer. J Am Chem Soc, 2010, 132: 6654–6656

    Article  CAS  Google Scholar 

  14. Zhang YB, Zhang WX, Feng FY, Zhang JP, Chen XM. A highly connected porous coordination polymer with unusual channel structure and sorption properties. Angew Chem Int Ed, 2009, 48: 5287–5290

    Article  CAS  Google Scholar 

  15. Qiu SL, Zhu GS. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord Chem Rev, 2009, 253: 2891–2911

    Article  CAS  Google Scholar 

  16. Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers. Coord Chem Rev, 2007, 251: 2490–2509

    Article  CAS  Google Scholar 

  17. Meek ST, Greathouse JA, Allendorf MD. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv Mater, 2011, 23: 249–267

    Article  CAS  Google Scholar 

  18. Hu YH, Zhang L. Hydrogen storage in metal-organic frameworks. Adv Mater, 2010, 22: E117–E130

    Article  CAS  Google Scholar 

  19. Chen BL, Xiang SC, Qian GD. Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res, 2010, 43: 1115–1124

    Article  CAS  Google Scholar 

  20. Janiak C, Vieth JK. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J Chem, 2010, 34: 2366–2388

    Article  CAS  Google Scholar 

  21. Zou RQ, Abdel-Fattah AI, Xu HW, Zhao YS, Hickmott DD. Storage and separation applications of nanoporous metal-organic frameworks. Cryst Eng Commun, 2010, 12: 1337–1353.

    CAS  Google Scholar 

  22. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M, Yaghi OM. Secondary building units, nets and bonding in the chemistry of metalorganic frameworks. Chem Soc Rev, 2009, 38: 1257–1283

    Article  CAS  Google Scholar 

  23. Perry JJ, IV P, Jason A, Zaworotko MJ. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem Soc Rev, 2009, 38: 1400–1417

    Article  CAS  Google Scholar 

  24. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev, 2009, 38: 1477–1504

    Article  CAS  Google Scholar 

  25. Wang ZQ, Cohen SM. Postsynthetic modification of metal-organic frameworks. Chem Soc Rev, 2009, 38: 1315–1329

    Article  CAS  Google Scholar 

  26. Yu RM, Kuang XF, Wu XY, Lu CZ, Donahue JP. Stabilization and immobilization of polyoxometalates in porous coordination polymers through host-guest interactions. Coord Chem Rev, 2009, 253: 2872–2890

    Article  CAS  Google Scholar 

  27. Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nature Chem, 2009, 1: 695–704

    Article  CAS  Google Scholar 

  28. Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: Opportunities for catalysis. Angew Chem Int Ed, 2009, 48: 7502–7513

    Article  CAS  Google Scholar 

  29. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res, 2008, 41: 1782–1789

    Article  CAS  Google Scholar 

  30. Tanaka D, Kitagawa S. Template effects in porous coordination polymers. Chem Mater, 2008, 20: 922–931

    Article  CAS  Google Scholar 

  31. Fischer RA, Woell C. Functionalized coordination space in metalorganic frameworks. Angew Chem Int Ed, 2008, 47: 8164–8168

    Article  CAS  Google Scholar 

  32. Song YF, Cronin L. Postsynthetic covalent modification of metalorganic framework (MOF) materials. Angew Chem Int Ed, 2008, 47: 4635–4637

    Article  CAS  Google Scholar 

  33. Tranchemontagne DJ, Ni Z, O’Keeffe M, Yaghi OM. Reticular chemistry of metal-organic polyhedra. Angew Chem Int Ed, 2008, 47: 5136–5147

    Article  CAS  Google Scholar 

  34. Nagaoka M, Ohta Y, Hitomi H. Theoretical characterization of coordination space: Adsorption state and behavior of small molecules in nanochanneled metal-organic frameworks via electronic state theory, molecular mechanical and Monte Carlo simulation. Coord Chem Rev, 2007, 251: 2522–2536

    Article  CAS  Google Scholar 

  35. Lin X, Jia JH, Hubberstey P, Schroder M, Champness NR. Hydrogen storage in metal-organic frameworks. Cryst Eng Commun, 2007, 9: 438–448

    CAS  Google Scholar 

  36. Kubota Y, Takata M, Kobayashi TC, Kitagawa S. Observation of gas molecules adsorbed in the nanochannels of porous coordination polymers by the in situ synchrotron powder diffraction experiment and the MEM/Rietveld charge density analysis. Coord Chem Rev, 2007, 251: 2510–2521

    Article  CAS  Google Scholar 

  37. Kawano M, Fujita M. Direct observation of crystalline-state guest exchange in coordination networks. Chem Soc Rev, 2007: 2592–2605

  38. Suh MP, Cheon YE. Recent advances in the dynamics of single crystal to single crystal transformations in metal-organic open frameworks. Aust J Chem, 2006, 59: 605–612

    Article  CAS  Google Scholar 

  39. Halder GJ, Kepert CJ. Single crystal to single crystal structural transformations in molecular framework materials. Aust J Chem, 2006, 59: 597–604

    Article  CAS  Google Scholar 

  40. Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev, 2005, 34: 109–119

    Article  CAS  Google Scholar 

  41. Rowsell JLC, Yaghi OM. Strategies for hydrogen storage in metalorganic frameworks. Angew Chem Int Ed, 2005, 44: 4670–4679

    Article  CAS  Google Scholar 

  42. Fletcher AJ, Thomas KM, Rosseinsky MJ. Flexibility in metalorganic framework materials: Impact on sorption properties. J Solid State Chem, 2005, 178: 2491–2510

    Article  CAS  Google Scholar 

  43. Uemura K, Matsuda R, Kitagawa S. Flexible microporous coordination polymers. J Solid State Chem, 2005, 178, 2420–2429

    Article  CAS  Google Scholar 

  44. Maspoch D, Ruiz-Molina D, Veciana J. Magnetic nanoporous coordination polymers. J Mater Chem, 2004, 14: 2713–2723

    Article  CAS  Google Scholar 

  45. Rowsell JLC, Yaghi OM. Metal-organic frameworks: A new class of porous materials. Micropor Mesopor Mat 2004, 73: 3–14

    Article  CAS  Google Scholar 

  46. Kesanli B, Lin WB. Chiral porous coordination networks: Rational design and applications in enantioselective processes. Coord Chem Rev, 2003, 246: 305–326

    Article  CAS  Google Scholar 

  47. Rosi NL, Eddaoudi M, Kim J, O’Keeffe M, Yaghi OM. Advances in the chemistry of metal-organic framework. CrystEngCommum, 2002, 4: 401–404

    Article  CAS  Google Scholar 

  48. Jiang YM, Yin Z, He KH, Zeng MH, Kurmoo M. Reversible shuttle action upon dehydration and rehydration processes in cationic coordinatively-bonded (4,4) square-grid nets threaded by supramolecular bonded anions, {[CuII(4,4′-bpy)2(H2O)][CuII(2-pySO3)3]·(NO3)}3·H2O. Inorg Chem, 2011, 50: 2329–2333

    Article  CAS  Google Scholar 

  49. Chen Q, Lin JB, Xue W, Zeng MH, Chen XM. A porous coordination polymer assembled from 8-connected {CoII 3O} cluster and Isonicotinate: Multiple active metal sites, apical ligand substitution, high H2 adsorption and magnetism. Inorg Chem, 2011, 50: 2321–2328

    Article  CAS  Google Scholar 

  50. Zeng MH, Wang QX, Tan YX, Hu S, Zhao HX, Long LS, Kurmoo M. Rigid pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J Am Chem Soc, 2010, 132: 2561–2563

    Article  CAS  Google Scholar 

  51. Chen Q, Zeng MH, Wei LQ, Kurmoo M. A multifaceted cage cluster, [CoII 6O12⊃X] (X = Cl or F): Halide template effect and frustrated magnetism. Chem Mater, 2010, 22: 4328–4334

    Article  CAS  Google Scholar 

  52. Han ZB, Zhang GX, Zeng MH, Yuan DQ, Fang QR, Li JR, Ribas J, Zhou HC. Unprecedented marriage of a cationic pentanuclear cluster and a 2D polymeric anionic layer based on a flexible tripodal ligand and a CuII ion. Inorg Chem, 2010, 49: 769–771

    Article  CAS  Google Scholar 

  53. Zeng MH, Hu S, Chen Q, Xie G, Qi S, Gao SL, Tang LY. Apical ligand substitution, shape recognition, vapor-adsorption phenomenon, and microcalorimetry for a pillared bilayer porous framework that shrinks or expands in crystal-to-crystal manners upon change in the cobalt(II) coordination environment. Inorg Chem, 2009, 48: 7070–7079

    Article  CAS  Google Scholar 

  54. Hu S, He KH, Zeng MH, Zou HH, Jiang YM. Crystalline-state guest-exchange and gas-adsorption phenomenon for a “Soft” supramolecular porous framework stacking by a rigid linear coordination polymer. Inorg Chem, 2008, 47: 5218–5224

    Article  CAS  Google Scholar 

  55. Zeng MH, Feng XL, Zhang WX, Chen XM. A robust microporous 3D cobalt(II) coordination polymer with new magnetically frustrated 2D lattices: Single-crystal transformation and guest modulation of cooperative magnetic properties. Dalton Trans, 2006, 44: 5294–5303

    Article  CAS  Google Scholar 

  56. Zeng MH, Feng XL, Zhang WX, Chen XM. Crystal-to-crystal transformations of a microporous metal-organic laminated, framework triggered by guest exchange, dehydration and readsorption. Dalton Trans, 2004, 15: 2217–2223

    Article  Google Scholar 

  57. Leong WL and Vittal JJ. One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chem Rev, 2011, 111: 688–764

    Article  CAS  Google Scholar 

  58. Takamizawa S, Nakata EI, Yokoyama H, Mochizuki K, Mori W. Carbon dioxide inclusion phases of a transformable 1D coordination polymer host [Rh2(O2CPh)4-(pyz)]n. Angew Chem Int Ed, 2003, 42: 4331–4334

    Article  CAS  Google Scholar 

  59. Dalrymple SA, Shimizu GKH. Crystal engineering of a permanently porous network sustained exclusively by charge-assisted hydrogen bonds. J Am Chem Soc, 2007, 129: 12114–12116

    Article  CAS  Google Scholar 

  60. Ghoreishi AM, Morsali A, Zeller M. A dynamic crystalto-amorphous transformation microporous ZnII mixed neutral-ligand metal-organic polymer {[Zn(bpp)2(4,4′-bipy)(H2O)2] (ClO4)·2H2O}n. Z Anorg Allg Chem, 2009, 635:1673–1677

    Article  CAS  Google Scholar 

  61. Wang CC, Yang CC, Yeh CT, Cheng KY, Chang PC, Ho ML, Lee GH, Shih WJ, Sheu HS. Reversible solid-state structural transformation of a 1D-2D coordination polymer by thermal de/rehydration processes. Inorg Chem, 2011, 50: 597–603

    Article  CAS  Google Scholar 

  62. Li G, Zhu CF, Xi XB, Cui Y. Selective binding and removal of organic molecules in a flexible polymeric material with stretchable metallosalen chains. Chem Commun, 2009, 2118–2120

  63. Lee EY, Suh MP. A robust porous material constructed of linear coordination polymer chains: Reversible single-crystal to single-crystal transformations upon dehydration and rehydration. Angew Chem Int Ed, 2004, 43: 2798–2801

    Article  CAS  Google Scholar 

  64. Wu CD, Lin WB. Highly porous, homochiral metal-organic frameworks: Solvent-exchange-induced single-crystal to single-crystal transformations. Angew Chem Int Ed, 2005, 44: 1958–1961

    Article  CAS  Google Scholar 

  65. Kepert CJ, Hesek D, Beer PD, Rosseinsky MJ. Desolvation of a novel microporous hydrogen-bonded framework: Characterization by in situ single-crystal and powder X-ray diffraction. Angew Chem Int Ed, 1998, 37: 3158–3160

    Article  CAS  Google Scholar 

  66. Choi HJ, Suh MP. Dynamic and redox active pillared bilayer open framework: Single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. J Am Chem Soc, 2004, 126: 15844–15851

    Article  CAS  Google Scholar 

  67. Aijaz A, Lama P, Bharadwaj PK. Two-dimensional coordination polymer with a non-interpenetrated (4,4) net showing anion exchange and structural transformation in single-crystal-to-singlecrystal fashion. Inorg Chem, 2010, 49, 5883–5889

    Article  CAS  Google Scholar 

  68. Kaneko W, Ohba M, Kitagawa S. A flexible coordination polymer crystal providing reversible structural and magnetic conversions. J Am Chem Soc, 2007, 129, 13706–13712

    Article  CAS  Google Scholar 

  69. Ghosh SK, Kaneko W, Kiriya D, Ohba M, Kitagawa S. A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations. Angew Chem Int Ed, 2008, 47: 8843–8847

    Article  CAS  Google Scholar 

  70. Sharma MK, Bharadwaj PK. A dynamic open framework exhibiting guest- and/or temperature-induced bicycle-pedal motion in singlecrystal to single-crystal transformation. Inorg Chem, 2011, 50: 1889–1897

    Article  CAS  Google Scholar 

  71. Zhang YJ, Liu T, Kanegawa S, Sato O. Interconversion between a nonporous nanocluster and a microporous coordination polymer showing selective gas adsorption. J Am Chem Soc, 2010, 132: 912–913

    Article  CAS  Google Scholar 

  72. Kondo A, Nakagawa T, Kajiro H, Chinen A, Hattori Y, Okino F, Ohba T, Kaneko K, Kanoh H. Dynamic changes in dimensional structures of co-complex crystals. Inorg Chem, 2010, 49: 9247–9252

    Article  CAS  Google Scholar 

  73. Yoshida Y, Inoue K, Kurmoo M. Consecutive irreversible singlecrystal to single-crystal and reversible single-crystal to glass transformations and associated magnetism of the coordination polymer. [MnII(rac-pnH)(H2O)CrIII(CN)6]·H2O. Inorg Chem, 2009, 48: 10726–10736

    Article  CAS  Google Scholar 

  74. Chen ZX, Xiang SC, Zhao DY, Chen BL. Reversible two-dimensional-three dimensional framework transformation within a prototype metal-organic framework. Cryst Growth Des, 2009, 9: 5293–5296

    Article  CAS  Google Scholar 

  75. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276–279

    Article  CAS  Google Scholar 

  76. Deiters E, Bulach V, Hosseini MW. Reversible single-crystal-tosingle-crystal guest exchange in a 3-D coordination network based on a zinc porphyrin. Chem Commun, 2005, 3906–3908

  77. Seo J, Matsuda R, Sakamoto H, Bonneau C, Kitagawa S. A pillaredlayer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J Am Chem Soc, 2009, 131: 12792–12800

    Article  CAS  Google Scholar 

  78. Xie LH, Lin JB, Liu XM, Wang Y, Zhang WX, Zhang JP, Chen XM. Porous coordination polymer with flexibility imparted by coordinatively changeable lithium ions on the pore surface. Inorg Chem, 2010, 49: 1158–1165

    Article  CAS  Google Scholar 

  79. Suh MP, Cheon YE, Lee EY. Reversible transformation of ZnII coordination geometry in a single crystal of porous metal-organic framework [Zn3(ntb)2(EtOH)2]·4EtOH. Chem Eur J, 2007, 13: 4208–4215

    Article  CAS  Google Scholar 

  80. Duan CY, Wei ML, Guo D, He C, Meng QJ. Crystal structures and properties of large protonated water clusters encapsulated by metalorganic frameworks. J Am Chem Soc, 2009, 132: 3321–3330

    Article  CAS  Google Scholar 

  81. Ghosh SK, Bureekaew S, Kitagawa S. A dynamic, isocyanuratefunctionalized porous coordination polymer. Angew Chem Int Ed, 2008, 47: 3403–3406

    Article  CAS  Google Scholar 

  82. Liu HK, Tsao TH, Zhang YT, Lin CH. Microwave synthesis and single-crystal-to-single-crystal transformation of magnesium coordination polymers exhibiting selective gas adsorption and luminescence properties. CrystEngComm, 2009, 11: 1462–1468

    Article  CAS  Google Scholar 

  83. Park HJ, Suh MP. Mixed-ligand metal-organic frameworks with large pores: Gas sorption properties and single-crystal-to-singlecrystal transformation on guest exchange. Chem Eur J, 2008, 14: 8812–8821

    Article  CAS  Google Scholar 

  84. Cheng XN, Zhang WX, Lin YY, Zheng YZ, Chen XM. A dynamic porous magnet exhibiting reversible guest-induced magnetic behavior modulation. Adv Mater, 2007, 19: 1494–1498

    Article  CAS  Google Scholar 

  85. Ling Y, Zhang L, Li J, Du M. A robust porous PtS-type Cu(II) metal-organic framework: Single-crystal-to-single-crystal transformation with reversible guest intercalation accompanied by color change. CrystEngCommun, 2011, 13: 768–770

    Article  CAS  Google Scholar 

  86. Reger DL, Horger JJ, Smith MD, Long GJ, Grandjean F. Homochiral, helical supramolecular metal-organic frameworks organized by strong π-π stacking interactions: Single-crystal to single-crystal transformations in closely packed solids. Inorg Chemun, 2011, 50: 686–704

    Article  CAS  Google Scholar 

  87. Aijaz A, Barea E, Bharadwaj PK. Diamondoid three-dimensional metal-organic framework showing structural transformation with guest molecules. Cryst Growth Des, 2009, 9: 4480–4486

    Article  CAS  Google Scholar 

  88. Kong XJ, Long LS, Zheng ZP, Huang RB, Zheng LS. Keeping the ball rolling: Fullerene-like molecular clusters. Acc Chem Res, 2010, 43: 201–209

    Article  CAS  Google Scholar 

  89. Thallapally PK, Wirsig TB, Barbour LJ, Atwood JL. Crystal engineering of nonporous organic solids for methane sorption. Chem Commun, 2005, 4420–4422

  90. Jiang JJ, Li L, Lan M, Pan M, Eichhofer A, Fenske D, Su CY. Thermally stable porous hydrogen-bonded coordination networks displaying dual properties of robustness and dynamics upon guest uptake. Chem Eur J, 2010, 16: 1841–1848

    Article  CAS  Google Scholar 

  91. Cheng XN, Xue W, Lin JB, Chen XM. Porous ionic/molecular crystal composed of highly symmetric magnetic clusters. Chem Commun, 2010, 46: 246–248

    Article  CAS  Google Scholar 

  92. Dobrzańska L, Lloyd GO, Raubenheimer HG, Barbour LJ. A discrete metallocyclic complex that retains its solvent-templated channel structure on guest removal to yield a porous, gas sorbing material. J Am Chem Soc, 2005, 127: 13134–13135

    Article  CAS  Google Scholar 

  93. Dobrzańska L, Lloyd GO, Raubenheimer HG, Barbour LJ. Permeability of a seemingly nonporous crystal formed by a discrete metallocyclic complex. J Am Chem Soc, 2006, 128, 698–699

    Article  CAS  Google Scholar 

  94. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim Jaheon. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705–714

    CAS  Google Scholar 

  95. Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc, 2006, 128: 16876–16883

    Article  CAS  Google Scholar 

  96. Dincă M, Han WS, Liu Y, Dailly A, Brown CM, Long JR. Observation of Cu2+-H2 interactions in a fully desolvated sodalite-type metalorganic framework. Angew Chem Int Ed, 2007, 45, 1419–1422

    Article  CAS  Google Scholar 

  97. Das MC, Bharadwaj PK. Effect of bulkiness on reversible substitution reaction at MnII center with concomitant movement of the lattice DMF: Observation through single-crystal to single-crystal fashion. Chem A Eur J, 2010, 16, 5070–5077

    Article  CAS  Google Scholar 

  98. Das MC, Bharadwaj PK. A porous coordination polymer exhibiting reversible single-crystal to single-crystal substitution reactions at Mn(II) centers by nitrile guest molecules. J Am Chem Soc, 2009, 131: 10942–10949

    Article  CAS  Google Scholar 

  99. Dincă M, Long JR. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed, 2008, 47: 6766–6779

    Article  CAS  Google Scholar 

  100. Zheng SL, Wang YZ, Yu ZP, Lin Q, Coppens P. Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state. J Am Chem Soc, 2009, 131: 18036–18037

    Article  CAS  Google Scholar 

  101. Zheng SL, Vande Velde CML, Messerschmidt M, Volkov A, Gembicky M, Coppens P. Supramolecular solids as a medium for singlecrystal-to-single-crystal E/Z photoisomerization: Kinetic studyof the photoreactions of two Zn-coordinated tiglic acid molecules. Chem Eur J, 2008, 14: 706–713

    Article  CAS  Google Scholar 

  102. Mir MH, Koh LL, Tan GK, Vittal JJ. Single-crystal to single-crystal photochemical structural transformations of interpenetrated 3D coordination polymers by [2+2] cycloaddition reactions. Angew Chem Int Ed, 2010, 49: 390–393

    CAS  Google Scholar 

  103. Liu D, Li NY, Lang JP. Single-crystal to single-crystal transformation of 1D coordination polymer via photochemical [2+2] cycloaddition reaction. Dalton Trans, 2011, 40: 2170–2172

    Article  CAS  Google Scholar 

  104. Han YF, Lin YJ, Jia WG, Wang GL, Jin GX. Template-controlled topochemical photodimerization based on “organometallic macrocycles” through single-crystal to single-crystal transformation. Chem Commun, 2008, 15: 1807–1809

    Article  CAS  Google Scholar 

  105. Tanabe KK, Allen CA, Cohen SM. Photochemical activation of a metal-organic framework to reveal functionality. Angew Chem Int Ed, 2010, 49: 9730–9733

    Article  CAS  Google Scholar 

  106. Li N, Jiang FL, Chen L, Li XJ, Chen QH, Hong MC. From discrete octahedral nanocages to 1D coordination polymer: Coordinationdriven a single-crystal-to-single-crystal transformation via anion exchange. Chem Commun, 2011, 47: 2327–2329

    Article  CAS  Google Scholar 

  107. Park HJ, Cheon YE, Suh MP. Post-synthetic reversible incorporation of organic linkers into porous metal-organic frameworks through single-crystal-to-single-crystal transformations and modification of gas sorption properties. Chem Eur J, 2010, 16: 11662–11669

    Article  CAS  Google Scholar 

  108. Kepert CJ, Rossensinsky MJ. Zeolite-like crystal structure of an empty microporous molecular framework. Chem Commun, 1999, 375–376

  109. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu3(TMA)2-(H2O)3]n. Science, 1999, 283: 1148–1150

    Article  CAS  Google Scholar 

  110. Biradha K, Hongo Y, Fujita M. Open square-grid coordination polymers of the dimensions 20×20 Å: Remarkably stable and crystalline solids even after guest removal. Angew Chem Int Ed, 2000, 39: 3843–3845

    CAS  Google Scholar 

  111. Suh MP, Ko JW, Chi HJ. A metal-organic bilayer open framework with a dynamic component: Single-crystal-to-single-crystal transformations. J Am Chem Soc, 2002, 124: 10976–10977

    Article  CAS  Google Scholar 

  112. Biradha K, Fujita M. A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew Chem Int Ed, 2002, 41: 3392–3395

    Article  CAS  Google Scholar 

  113. Wang ZM, Zhang B, Fujiwara H, Kobayashi H, Kurmoo M. Mn3(HCOO)6: A 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature. Chem Commun, 2004, 416–417

  114. Zhang JP, Lin YY, Zhang WX, Chen XM. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J Am Chem Soc, 2005, 127: 14162–14163

    Article  CAS  Google Scholar 

  115. Ma JP, Dong YB, Huang RQ, Smith MD, Su CY. Spontaneously resolved chiral three-fold interpenetrating diamondoidlike Cu(II) coordination polymers with temperature-driven crystal-to-crystal transformation. Inorg Chem, 2005, 44: 6143–6145

    Article  CAS  Google Scholar 

  116. Li G, Yu WB, Cui Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J Am Chem Soc, 2008, 130: 4582–4583

    Article  CAS  Google Scholar 

  117. Li G, Yu WB, Ni J, Liu TF, Liu Y, Sheng EH, Cui Y. Self-assembly of a homochiral nanoscale metallacycle from a metallosalen complex for enantioselective separation. Angew Chem Int Ed, 2008, 47: 1245–1249

    Article  CAS  Google Scholar 

  118. Zhang B, Zhu DB, Zhang Y. Crystal-to-crystal transformation from a mononuclear compound in a hydrogen-bonded three-dimensional framework to a layered coordination polymer. Chem Eur J, 2010, 16: 9994–9997

    Article  CAS  Google Scholar 

  119. Duan ZM, Zhang Y, Zhang B, Zhu DB. Crystal-to-crystal transformation from antiferromagnetic chains into a ferromagnetic diamondoid framework. J Am Chem Soc, 2009, 131: 6934–6935

    Article  CAS  Google Scholar 

  120. Lin JB, Zhang JP, Zhang WX, Xue W, Xue DX, Chen XM. Porous manganese(II) 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolate frameworks: Rational self-assembly, supramolecular isomerism, solidstate transformation, and sorption properties. Inorg Chem, 2009, 48: 6652–6660

    Article  CAS  Google Scholar 

  121. Xue DX, Zhang WX, Chen XM, Wang HZ. Single-crystalto-single-crystal transformation involving release of bridging water molecules and conversion of chain helicity in a chiral three-dimensional metal-organic framework. Chem Commun, 2008, 1551–1553

  122. Cheng XN, Zhang WX, Chen XM. Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spincanting antiferromagnetic layer. J Am Chem Soc, 2007, 129: 15738–15739

    Article  CAS  Google Scholar 

  123. Zhang B, Wang ZM, Kurmoo M, Gao S, Inoue K, Kobayashi H. Guest-induced chirality in the ferrimagnetic nanoporous diamond framework Mn3(HCOO)6. Adv Funct Mater, 2007, 17: 577–584

    Article  CAS  Google Scholar 

  124. Wang ZM, Zhang YJ, Kurmoo M, Liu T, Vilminot S, Zhao B, Gao S. [Zn3(HCOO)6]: A porous diamond framework conformable to guest inclusion. Aust J Chem, 2006, 59: 617–628

    Article  CAS  Google Scholar 

  125. Zhu WH, Wang ZM, Gao S. A 3D porous lanthanide-fumarate framework with water hexamer occupied cavities, exhibiting a reversible dehydration and rehydration procedure. Dalton Trans, 2006, 765–768

  126. Liu QK, Ma JP, Dong YB. Adsorption and separation of reactive aromatic isomers and generation and stabilization of their radicals within cadmium(II)-triazole metal-organic confined space in a singlecrystal-to-single-crystal fashion. J Am Chem Soc, 2010, 132: 7005–7017

    Article  CAS  Google Scholar 

  127. Wang P, Ma JP, Dong YB, Huang RQ. Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra. J Am Chem Soc, 2007, 129: 10620–10621

    Article  CAS  Google Scholar 

  128. Dong YB, Zhang Q, Liu LL, Ma JP, Tang B, Huang RQ. [Cu(C24H22N4O3)]·CH2Cl2: A discrete breathing metallamacrocycle showing selective and reversible guest adsorption with retention of single crystallinity. J Am Chem Soc, 2007, 129: 1514–1515

    Article  CAS  Google Scholar 

  129. Su CY, Goforth AM, Smith MD, Pellechia PJ, zur Loye HC. Exceptionally stable, hollow tubular metal-organic architectures: Synthesis, characterization, and solid-state transformation study. J Am Chem Soc, 2004, 126: 3576–3586

    Article  CAS  Google Scholar 

  130. Zhuang CF, Zhang JY, Wang Q, Chu ZH, Fenske D, Su CY. Temperature-dependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated CdII grid network. Chem Eur J, 2009, 15: 7578–7585

    Article  CAS  Google Scholar 

  131. Min TY, Zheng B, Bai JF, Sun R, Li YZ, Zhang ZX. Topology diversity and reversible crystal-to-amorphous transformation properties of 3D cobalt coordination polymers from a series of 1D rodlike dipyridyl-containing building blocks and a flexible tripodal acid with additional amide groups. CrystEngCommun, 2010, 12: 70–72

    Article  CAS  Google Scholar 

  132. Sun R, Li YZ, Bai JF, Pan Y. Synthesis, structure, water-induced reversible crystal-to-amorphous transformation, and luminescence properties of novel cationic spacer-filled 3D transition metal supramolecular frameworks from N,N′,N″-tris(carboxymethyl)-1,3,5-benzenetricarboxamide. Cryst Growth Des, 2007, 7: 890–894

    Article  CAS  Google Scholar 

  133. Zhao JP, Hu BW, Yang Q, Hu TL, Bu XH. Single-crystal-tosingle-crystal transformation in unusual three-dimensional manganese( II) frameworks exhibiting unprecedented topology and homospin ferrimagnet. Inorg Chem, 2009, 48: 7111–7116

    Article  CAS  Google Scholar 

  134. Hu BW, Zhao JP, Yang Q, Liu FC, Bu XH. Interconversion of two new nickel(II) coordination polymers with different topologies: Synthesis, structure and magnetic properties. J Mater Chem, 2009, 19: 6827–6832

    Article  CAS  Google Scholar 

  135. Li B, Wei RJ, Tao J, Huang RB, Zheng LS, Zheng ZP. Solvent induced transformation of single crystals of a spin-crossover (SCO) compound to single crystals with two distinct SCO centers. J Am Chem Soc, 2010, 132: 1558–1566

    Article  CAS  Google Scholar 

  136. Bai YL, Tao J, Huang RB, Zheng LS. Structural transformations from a 1-D chain to two 3-D supramolecular isomers via crystal disassembly and reassembly. CrystEngCommun, 2008, 10: 472–474

    Article  CAS  Google Scholar 

  137. Gu ZG, Cai YP, Fang HC, Zhou ZY, Thallapally PK, Tian JA, Liu J, Exarhos GJ. Conversion of nonporous helical cadmium organic framework to a porous form. Chem Commun, 2010, 46: 5373–5375

    Article  CAS  Google Scholar 

  138. Cai YP, Zhou XX, Zhou ZY, Zhu SZ, Thallapally PK, Liu J. Singlecrystal-to-single-crystal transformation in a one-dimensional Ag-Eu helical system. Inorg Chem, 2009, 48: 6341–6343

    Article  CAS  Google Scholar 

  139. Bao X, Guo PH, Liu JL, Leng JD, Tong ML. Crystalline-state cis-to-trans transformation of a two-dimensional spin-crossover system. Chem Eur J, 2011, 17: 2335–2339

    Article  CAS  Google Scholar 

  140. Hao HQ, Liu WT, Tan W, Lin ZJ, Tong ML. Enantiopure and racemic sandwich-like networks with dehydration, readsorption, and selective guest-exchange phase transformations. Cryst Growth Des, 2009, 9: 457–465

    Article  CAS  Google Scholar 

  141. Sun JK, Jin XH, Chen C, Zhang J. Thermally triggered reversible transformation between parallel staggered stacking and plywood-like stacking of 1D coordination polymer chains. Inorg Chem, 2010, 49: 7046–7051

    Article  CAS  Google Scholar 

  142. Yao QX, Pan L, Jin XH, Li J, Ju ZF, Zhang J. Bipyridinium arraytype porous polymer displaying hydrogen storage, charge-transfertype guest inclusion, and tunable magnetic properties. Chem Eur J, 2009, 15: 11890–11897

    Article  CAS  Google Scholar 

  143. Tian G, Zhu GS, Su BL, Qiu SL. Solvent influence on isomer separation and conformation control of the cyclohexanedicarboxylate ligand toward La(III) coordination polymeric framework. J Mater Sci, 2009, 44: 6576–6582

    Article  CAS  Google Scholar 

  144. Hao ZM, Zhang XM. Solvent induced molecular magnetic changes observed in single-crystal-to-single-crystal transformation. Dalton Trans, 2011, 40: 2092–2098

    Article  CAS  Google Scholar 

  145. Su Z, Chen Min, Okamura T, Chen MS, Chen SS, Sun WY. Reversible single-crystal-to-single-crystal transformation and highly selective adsorption property of three-dimensional cobalt(II) frameworks. Inorg Chem, 2011, 50: 985–991

    Article  CAS  Google Scholar 

  146. Ma CB, Hu MQ, Chen H, Wang M, Zhang CX, Chen CN, Liu QT. A trimanganese cluster-based 2D layer framework with facile singlecrystal-to-single-crystal transformation to afford a 1D chain structure. CrystEngComm, 2010, 12: 1467–1473

    Article  CAS  Google Scholar 

  147. Cao ML, Mo HJ, Liang JJ, Ye BH. Reversible single-crystal-tosingle-crystal transformation driven by adsorption/desorption of water over organic solvents and thermal stimulation. CrystEngCommun, 2009, 11: 784–790

    Article  CAS  Google Scholar 

  148. Ye JW, Liu Y, Zhao YF, Mu XY, Zhang P, Wang Y. Porous lanthanide-copper coordination frameworks exhibiting reversible singlecrystal-to-single-crystal transformation based on variable coordination number and geometry. CrystEngCommun, 2008, 10: 598–604

    Article  CAS  Google Scholar 

  149. Chen XD, Zhao XH, Chen M, Du M. A 3D copper(II) coordination framework showing different kinetic and thermodynamic crystal transformations through removal of guest water cubes. Chem Eur J, 2009, 15: 12974–12977

    Article  CAS  Google Scholar 

  150. Zhu P, Gu W, Zhang LZ, Liu X, Tian JL, Yan SP. A rare thermally induced single crystal to single crystal transformation from a 2D chiral coordination polymer to a 3D chiral coordination polymer. Eur J Inorg Chem, 2008, 19: 2971–2974

    Article  CAS  Google Scholar 

  151. Millange F, Serre C, Guillou N, Férey G, Walton RI. Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study. Angew Chem Int Ed, 2008, 47:4100–4105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingHua Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Z., Zeng, M. Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. Sci. China Chem. 54, 1371–1394 (2011). https://doi.org/10.1007/s11426-011-4353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4353-4

Keywords

Navigation