Skip to main content
Log in

A series of 3d–4f heterometallic frameworks comprising 2D lanthanide-organic layers and diverse Cu-complex pillars

  • Articles
  • Special Topic · Coordination Polymer
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Six novel 3D layer-pillared lanthanide-transition metal coordination polymers, LnCuX(IN)2(Ac)(H2O) (Ln = Tb, X = Br (1); Ln = Er, X = Cl (2)), [LnCuCl(IN)2(Ac)]·H2O (Ln = Gd (3); Ln = Eu (4)), and [LnCu2Br2(IN)2(Ac)(H2O)]·nH2O (Ln = Dy, n =0 (5); Ln = Gd, n = 0.5 (6)) (IN = isonicotinate, Ac = acetate), have been obtained by linking Ln-organic layers and diverse Cu-complex pillars under hydrothermal conditions. 1 and 2 are isostructural and formed by 2D Ln-IN-Ac layers and CuX(IN)2 pillars (X = Br (1), X= Cl (2)); 3 and 4 are isomorphic and comprised of 2D Ln-IN-Ac layers and dimeric Cu2Cl(IN)4 pillars; while 5 and 6 are isostructural and built from 2D Ln-IN-Ac layers and tetrameric Cu4Br4(IN)4 pillars. The magnetic susceptibility investigation of 3 and 6 shows the presence of weak antiferromagnetic exchange interactions between the Ln3+ ions. Compounds 1–6 represent good examples of using 2D Ln-organic layers and diverse Cu-complex pillars as building units to construct intriguing 3D Ln-TM-organic frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plečnik CE, Liu S, Shore SG. Lanthanide-transition-metal complexes: From ion pairs to extended arrays. Acc Chem Res, 2003, 36: 499–508

    Article  Google Scholar 

  2. Wang Z, Shen X, Wang J, Zhang P, Li Y, Nfor E, Song Y, Ohkoshi S, Hashimoto K, You X. A Sodalite-like framework based on octacyanomolybdate and neodymium with guest methanol molecules and neodymium octahydrate ions. Angew Chem Int Ed, 2006, 45: 3287–3291

    Article  CAS  Google Scholar 

  3. Deng H, Shore SG. Direct ytterbium-iron interaction in an organometallic ladder polymers: Synthesis and structure of {[(CH3CN)3YbFe(CO)4]2−·cntdot·CH3CNCH3CN}n. J Am Chem Soc, 1991, 113: 8538–8540

    Article  CAS  Google Scholar 

  4. Deng H, Chun S, Florian P, Grandinetti PJ, Shore SG. Direct lanthanide-transition metal interactions: Synthesis of (NH3)2YbFe(CO)4 and crystal structures of {[(CH3CN)3-YbFe(CO)4]2·CH3CN} and [(CH3CN)3YbFe(CO)4]. Inorg Chem, 1996, 35: 3891–3896

    Article  CAS  Google Scholar 

  5. Shibasaki M, Yoshikawa N. Lanthanide complexes in multifunctional asymmetric catalysis. Chem Rev, 2002, 102: 2187–2210

    Article  CAS  Google Scholar 

  6. Blasse G. Rear earth spectroscopy in relation to materials science. Mater Chem Phys, 1992, 31: 3–6

    Article  CAS  Google Scholar 

  7. Sabatini N, Guardigli M, Lehn JM. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev, 1993, 123: 201–228

    Article  Google Scholar 

  8. Zhao B, Chen XY, Cheng P, Liao DZ, Yan SP, Jiang ZH. Coordination polymers containing 1D channels as selective luminescent probes. J Am Chem Soc, 2004, 126: 15394–15395

    Article  CAS  Google Scholar 

  9. Sun YQ, Zhang J, Yang GY. A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes. Chem Commun, 2006, 4700–4702

  10. Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev, 2002, 102: 2369–2387

    Article  CAS  Google Scholar 

  11. Kou H, Zhou B, Gao S, Wang R. A 2D cyano- and oxamidato-bridged heterotrimetallic CrIII-CuII-GdIII complex. Angew Chem Int Ed, 2003, 42: 3288–3291

    Article  CAS  Google Scholar 

  12. Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J. A tetranuclear 3d–4f single molecule magnet: [CuIILTbIII(hfac)2]2. J Am Chem Soc, 2004, 126: 420–421

    Article  CAS  Google Scholar 

  13. Zaleski CM, Depperman EC, Kampf JW, Kirk ML, Pecoraro VL. Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal single-molecule magnet. Angew Chem Int Ed, 2004, 43: 3912–3914

    Article  CAS  Google Scholar 

  14. Shiga T, Ōkawa H, Kitagawa S, Ohba M. Stepwise synthesis and magnetic control of trimetallic magnets [Co2Ln(L)2(H2O)4][Cr(CN)6nH2O (Ln = La, Gd; H2L = 2,6-di(acetoacetyl)pyridine) with 3-D pillared-layer structure. J Am Chem Soc, 2006, 128: 16426–16427

    Article  CAS  Google Scholar 

  15. Zhao B, Cheng P, Dai Y, Cheng C, Liao DZ, Yan SP, Jiang ZH, Wang GL. A nanotubular 3D coordination polymer based on a 3d-4f heterometallic assembly. Angew Chem Int Ed, 2003, 42: 934–936

    Article  CAS  Google Scholar 

  16. Zhao B, Cheng P, Chen XY, Cheng C, Shi W, Liao DZ, Yan SP, Jiang ZH. Design and synthesis of 3d–4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J Am Chem Soc, 2004, 126: 3012–3013

    Article  CAS  Google Scholar 

  17. Guillou O, Daiguebonne C, Camara M, Kerbellec N. New 3-D La(III)-Cu(II)-containing coordination polymer with a high potential porosity. Inorg Chem, 2006, 45: 8468–8470

    Article  CAS  Google Scholar 

  18. Costes JP, Dahan F, Dupuis A, Laurent JP. A genuine example of a discrete bimetallic (Cu,Gd) complex: Structural determination and magnetic properties. Inorg Chem, 1996, 35: 2400–2402

    Article  CAS  Google Scholar 

  19. Costes JP, Dahan F, Dupuis A, Laurent JP. A general route to strictly dinuclear Cu(II)/Ln(III) complexes. Structural determination and magnetic behavior of two Cu(II)/Gd(III) complexes. Inorg Chem, 1997, 36: 3429–3433

    Article  CAS  Google Scholar 

  20. Ren Y, Long L, Mao B, Yuan Y, Huang R, Zheng L. Nanoporous lanthanide-copper(II) coordination polymers: Syntheses and crystal structures of [{M2(Cu3(iminodiacetate)6)}·8H2O]n (M = La, Nd, Eu). Angew Chem Int Ed, 2003, 42: 532–535

    Article  CAS  Google Scholar 

  21. Prasad TK, Rajasekharan MV, Costes JP. A cubic 3d–4f structure with only ferromagnetic Gd-Mn interactions. Angew Chem Int Ed, 2007, 46: 2851–2854

    Article  CAS  Google Scholar 

  22. Ma Y, Li H, Wang J, Bao S, Cao R, Li Y, Ma J, Zheng L. Three-dimensional lanthanide(III)-copper(II) compounds based on an unsymmetrical 2-pyridylphosphonate ligand: An experimental and theoretical study. Chem Eur J, 2007, 13: 4759–4769

    Article  CAS  Google Scholar 

  23. Luo F, Batten SR, Che Y, Zheng J. Synthesis, structure, and characterization of three series of 3d–4f metal-organic frameworks based on rod-shaped and (6,3)-sheet metal carboxylate substructures. Chem Eur J, 2007, 13: 4948–4955

    Article  CAS  Google Scholar 

  24. Luo F, Hu DX, Xue L, Che YX, Zheng JM. Pillared 3d–4f frameworks with rare 3D architecture showing the coexistence of ferromagnetic and antiferromagnetic interactions between Gado-linium ions. Cryst Growth Des, 2007, 7: 851–853

    Article  CAS  Google Scholar 

  25. Zhao B, Cheng P, Dai Y, Cheng C, Liao D, Yan S, Jiang Z, Wang G. A nanotubular 3D coordination polymer based on a 3d-4f hetero-metallic assembly. Angew Chem Int Ed, 2003, 42: 934–936

    Article  CAS  Google Scholar 

  26. Gao H, Yi L, Ding B, Wang H, Cheng P, Liao D, Yan S. First 3D Pr(III)-Ni(II)-Na(I) polymer and A 3D Pr(III) open network based on pyridine-2,4,6-tricarboxylic acid. Inorg Chem, 2006, 45: 481–483

    Article  CAS  Google Scholar 

  27. Zhai B, Yi L, Wang H, Zhao B, Cheng P, Liao D, Yan S. First 3D 3d-4f interpenetrating structure: Synthesis, reaction, and characterization of {[LnCr(IDA)2(C2O4)]}n. Inorg Chem, 2006, 45: 8471–8473

    Article  CAS  Google Scholar 

  28. Gu XJ, Xue DF. Spontaneously resolved homochiral 3D lanthanide-silver heterometallic coordination framework with extended helical Ln-O-Ag subunits. Inorg Chem, 2006, 45: 9257–9261

    Article  CAS  Google Scholar 

  29. Gu X, Xue D. Self-assembly of 3-D 4d–4f coordination frameworks based on 1-D inorganic heterometallic chains and linear organic linkers. CrystEngCommun, 2007, 9: 471–477

    Article  CAS  Google Scholar 

  30. Cheng JW, Zheng ST, Yang GY. Diversity of crystal structure with different lanthanide ions involving in situ oxidation-hydrolysis reaction. Dalton Trans, 2007, 4059–4066

  31. Cheng JW, Zheng ST, Yang GY. Incorporating distinct metal clusters to construct diversity of 3D pillared-layer lanthanide-transition-metal frameworks. Inorg Chem, 2008, 47: 4930–4935

    Article  CAS  Google Scholar 

  32. Gunninga NS, Cahill CL. Novel coordination polymers and structural systematics in the hydrothermal M,M′ trans-3(-3-pyridyl) acrylic acid system. Dalton Trans, 2005, 2788–2792

  33. Yue Q, Yang J, Li G, Xu W, Chen J, Wang S. Three-dimensional 3d–4f heterometallic coordination polymers: Synthesis, structures, and magnetic properties. Inorg Chem, 2005, 44: 5241–5246

    Article  CAS  Google Scholar 

  34. Gu X, Xue D. Selected controlled synthesis of three-dimen-sional 4d–4f heterometallic coordination frameworks by lanthanide carboxylate subunits and silver centers. Cryst Growth Des, 2006, 6: 2551–2557

    Article  CAS  Google Scholar 

  35. Liu F, Zeng Y, Jiao J, Li J, Bu X, Ribas J, Batten SR. Novel heterometallic 3d–4f metal-azido complex of mixed ligands with unprecedented structure type: Synthesis, structure, and magnetic properties. Inorg Chem, 2006, 45: 6129–6131.

    Article  CAS  Google Scholar 

  36. Liu B, Li B, Li Y, Chen Y, Bao S, Zheng L. Lanthanide diruthenium(II,III) compounds showing layered and PtS-type open framework structures. Inorg Chem, 2007, 46: 8524–8532.

    Article  CAS  Google Scholar 

  37. Cheng JW, Zheng ST, Ma E, Yang GY. {LnIII521111-1,2-(CO2)2C6H4][isonicotine][H2O]}2CuI·X (Ln = Eu, Sm, Nd; X = ClO4 , Cl): A new pillared-layer approach to heterobimetallic 3d–4f 3D-network solids. Inorg Chem, 2007, 46: 10534–10538

    Article  CAS  Google Scholar 

  38. Bünzli JCG, Piguet C. Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem Rev, 2002, 102: 1897–1928

    Article  Google Scholar 

  39. Shibasaki M, Yoshikawa N. Lanthanide complexes in multifunctional asymmetric catalysis. Chem Rev, 2002, 102: 2187–2210

    Article  CAS  Google Scholar 

  40. Inanaga J, Furuno H, Hayano T. Asymmetric catalysis and amplification with chiral lanthanide complexes. Chem Rev, 2002, 102: 2211–2226

    Article  CAS  Google Scholar 

  41. Zhang MB, Zhang J, Zheng ST, Yang GY. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed, 2006, 44: 1385–1388

    Article  Google Scholar 

  42. Cheng JW, Zhang J, Zheng ST, Zhang MB, Yang GY. Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36} wheels. Angew Chem Int Ed, 2006, 45: 73–77

    Article  CAS  Google Scholar 

  43. Zhou YF, Hong MC, Wu XT. Lanthanide-transition metal coordination polymers based on multiple N- and O-donor ligands. Chem Commun, 2006, 135–143

  44. Gheorghe R, Andruh M, Müller A, Schmidtmann M. Heterobinuclear complexes as building blocks in designing extended structures. Inorg Chem, 2002, 41: 5314–5316

    Article  CAS  Google Scholar 

  45. Mitchell IV. Pillared Layered Structures: Current Trends and Applications. London: Elsevier, 1990

    Google Scholar 

  46. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res, 2001, 34: 319–330

    Article  CAS  Google Scholar 

  47. Merrill CA, Cheetham AK. Pillared layered structures based upon M(III) ethylene diphosphonates: The synthesis and crystal structures of MIII(H2O)(HO3P(CH2)2PO3) (M = Fe, Al, Ga). Inorg Chem, 2005, 44: 5273–5277

    Article  CAS  Google Scholar 

  48. Sheu CY, Lee SF, Lii KH. Ionic liquid of choline chloride/malonic acid as a solvent in the synthesis of open-framework iron oxalatophosphates. Inorg Chem, 2006, 45: 1891–1893

    Article  CAS  Google Scholar 

  49. Kitaura R, Fujimoto K, Noro S, Kondo M, Kitagawa S. A Pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = pyrazine-2,3-dicarboxylate; dpyg = 1,2-di(4-pyridyl)-glycol). Angew Chem Int Ed, 2002, 41: 133–135

    Article  CAS  Google Scholar 

  50. Hung L, Wang SL, Kao HM, Lii KH. Synthesis, crystal structure, and solid state NMR spectroscopy of NH4[(V2O3)2-(4,4′-bpy)2(H2PO4)(PO4)2]·0.5H2O, a mixed-valence vanadium (IV,V) phospha-Te with a pillared layer structure. Inorg Chem, 2002, 41: 3929–3934

    Article  CAS  Google Scholar 

  51. Wang CM, Lii KH. Synthesis and characterization of mixed metal organic-inorganic hybrid compounds with a pillared layer structure: CuVO2(4,4′-bpy)(XO4) (X = P, As). J Solid State Chem, 2003, 172: 194–199

    Article  CAS  Google Scholar 

  52. Maji TK, Uemura K, Chang HC, Matsuda R, Kitagawa S. Expanding and shrinking porous modulation based on pillaredlayer coordination polymers showing selective guest adsorption. Angew Chem Int Ed, 2004, 43: 3269–3272

    Article  CAS  Google Scholar 

  53. Chang WK, Chiang RK, Jiang YC, Wang SL, Lee SF, Lii KH. Metamagnetism in cobalt phosphates with pillared layer structures: [Co3(pyz)(HPO4)2F2] and [Co3(4,4′-bpy)(HPO4)2F2xH2O. Inorg Chem, 2004, 43: 2564–2568

    Article  CAS  Google Scholar 

  54. Lin ZE, Zhang J, Zheng ST, Yang GY. Synthesis and characterization of a new hybrid zinc phosphite (4,4′-bipy)[Zn(HPO3)]2 with a pillared layer structure. Microporous Mesoporous Mater, 2004, 68: 65–70

    Article  CAS  Google Scholar 

  55. Yu T, Tian YQ, Chen ZX, Chen JX, Weng LH, Zhao DY. [Ni3(cit)2(pyz)(H2O)4](H2O)4: A new three-dimensional porous coordination polymer with a pillared layer structure. Chem Lett, 2004, 1514

  56. Chun H, Dyunuk D, Kim K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials. Chem Eur J, 2005, 11: 3521–3529

    Article  CAS  Google Scholar 

  57. Noro SI, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew Chem Int Ed, 2000, 39: 2081–2084

    Article  Google Scholar 

  58. Chakrabarti S, Natarajian SJ. Hydrothermal synthesis and structure of a zinc arsenate-oxalate, [NH3(CH2)3NH2(CH2)3 NH3][Zn3(AsO4)(HAsO4)2(C2O4)], and a zinc arsenate, {NH3(CH3)2(CH3)3NH3}2][Zn6(AsO4)4 (HAsO4)3]·H2O, with three-dimensional structures. Chem Soc Dalton Trans, 2002, 4156–4161

  59. Lü J, Shen EH, Li YG, Xiao DG, Wang EB, Xu L. A novel pillar-layered organic-inorganic hybrid based on lanthanide polymer and polyomolybdate clusters: New opportunity toward the design and synthesis of porous framework. Cryst Growth Des, 2005, 5: 65–67

    Article  Google Scholar 

  60. Kitaura R, Kitagawa S, Kubota Y, Kobayashi TC, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang HC, Ozawa TC, Suzuki M, Sakata M, Takata M. Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science, 2002, 298: 2358–2361

    Article  CAS  Google Scholar 

  61. Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev, 2005, 34: 109–119

    Article  CAS  Google Scholar 

  62. Mulay LN, Boudreaux EA. Theory and Applications of Molecular Diamagnetism. New York: Wiley-VCH, 1976

    Google Scholar 

  63. Rigaku Corp. CrystalClear 1.3.6, Software User’s Guide for the Rigaku R-AXIS and Mercury and Jupiter CCD Automated X-ray Imaging System. Molecu Struc Corpora, 2000

  64. Sheldrick GM. A program for the Siemens Area Detector Absorption Correction, University of Göttingen, 1997

  65. Sheldrick GM. SHELXS 97 Program for Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997

    Google Scholar 

  66. Sheldrick GM. SHELXL 97, Program for the Refinement of Crystal Structures, University of Göttingen: Göttingen, Germany, 1997

    Google Scholar 

  67. Zhang MB, Zhang J, Zheng ST, Yang GY. A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands, Angew Chem Int Ed, 2005, 44: 1385–1388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoYu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zheng, S. & Yang, G. A series of 3d–4f heterometallic frameworks comprising 2D lanthanide-organic layers and diverse Cu-complex pillars. Sci. China Chem. 54, 1407–1417 (2011). https://doi.org/10.1007/s11426-011-4352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4352-5

Keywords

Navigation