Skip to main content
Log in

A single-site anisotropic soft-core model for the study of phase behavior of soft rodlike particles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel mesoscopic simulation model is proposed to study the liquid crystal phase behavior of the anisotropic rodlike particles with a soft repulsive interaction, which possesses a modified anisotropic conservative force type used in dissipative particle dynamics. The influences of the repulsion strength and the particle shape on the phase behavior of soft rodlike particles are examined. In the simulations, we observe the formation of the nematic phase and smectic-A phase from the initially isotropic phase. Moreover, we find that shorter soft rodlike particles with anisotropic repulsive interactions can form a stable smectic-B phase. Our results demonstrate that the soft anisotropic purely-repulsive potential between the rodlike particles can reflect the interaction nature between soft rodlike particles in a simple way and is sufficient to produce a range of ordered LC-like mesophases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodby JW. Optical activity and ferroelectricity in liquid crystals. Science, 1986, 231: 350–355

    Article  CAS  Google Scholar 

  2. Kato T. Self-assembly of phase-segregated liquid crystal structures. Science, 2002, 295: 2414–2418

    Article  CAS  Google Scholar 

  3. Wilson MR. Progress in computer simulations of liquid crystals. Int Rev Phys Chem, 2005, 24: 421–455

    Article  CAS  Google Scholar 

  4. Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed, 2006, 45: 38–68

    Article  CAS  Google Scholar 

  5. Care CM., Cleaver DJ. Computer simulation of liquid crystals. Rep Prog Phys, 2005, 68: 2665–2700

    Article  CAS  Google Scholar 

  6. Wilson MR. Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chem Soc Rev, 2007, 36: 1881–1888

    Article  CAS  Google Scholar 

  7. Ilnytskyi JM., Wilson MR. Molecular models in computer simulation of liquid crystals. J Mol Liq, 2001, 92: 21–28

    Article  CAS  Google Scholar 

  8. Zewdie H. Computer simulation studies of liquid crystals: A new Corner potential for cylindrically symmetric particles. J Chem Phys, 1998, 108: 2117

    Article  CAS  Google Scholar 

  9. Cinacchi G., Gaetani LD. Phase behavior of wormlike rods. Phys Rev E, 2008, 77: 051705

    Article  Google Scholar 

  10. Wilson MR, Thomas AB, Dennison M, Masters AJ. Computer simulations and theory of polymer tethered nanorods: the role of flexible chains in influencing mesophase stability. Soft Matter, 2009, 5: 363–368

    Article  CAS  Google Scholar 

  11. Avendaño C, Gil-villegas A, González-Tovar E. Computer simulation of charged hard spherocylinders. J Chem Phys, 2008, 128: 044506

    Article  Google Scholar 

  12. Zannoni C. Molecular design and computer simulations of novel mesophases. J Mater Chem, 2001, 11: 2637–2646

    Article  CAS  Google Scholar 

  13. Johnston SJ, Low RJ, Neal MP. Computer simulation of apolar bent-core and rodlike molecules. Phys Rev E, 2002, 65: 051706

    Article  Google Scholar 

  14. Michel DJ, Cleaver DJ. Coarse-grained simulation of amphiphilic self-assembly. J Chem Phys, 2007, 126: 034506

    Article  Google Scholar 

  15. Hughes ZE, Stimson LM, Slim H, Lintuvuori JS, Ilnytskyi JM, Wilson MR. An investigation of soft-core potentials for the simulation of mesogenic molecules and molecules composed of rigid and flexible segments. Comput Phys Commun, 2008, 178: 724–731

    Article  CAS  Google Scholar 

  16. Groot RD, Warren PB. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423

    Article  CAS  Google Scholar 

  17. Xia J, Zhong C. Self-assembly of two agents in a core-shell-corona multicompartment micelle studied by dissipative particle dynamics simulations. Macromol Rapid Commun, 2006, 27: 1654–1659

    Article  CAS  Google Scholar 

  18. AlSunaidi A, den Otter WK, Clarke JHR. Liquid-crystalline ordering in rod-coil diblock copolymers studied by mesoscale simulations. Phil Trans R Soc Lond A, 2004, 362: 1773–1781

    Article  CAS  Google Scholar 

  19. AlSunaidi A, den Otter WK, Clarke JHR. Microphase separation and liquid-crystalline ordering of rod-coil copolymers. J Chem Phys, 2009, 130: 124910

    Article  CAS  Google Scholar 

  20. Levine YK, Gomes AE, Martins AF, Polimeno A. A dissipative particle dynamics description of liquid-crystalline phases. I. Methodology and applications. J Chem Phys, 2005, 122: 144902

    Google Scholar 

  21. Li D-W., Liu XY, Feng YP. Bond-angle-potential-dependent dissipative particle dynamics simulation and lipid inverted phase. J Phys Chem B, 2004, 108: 11206–11213

    Article  CAS  Google Scholar 

  22. Bates M, Walker M. Dissipative particle dynamics simulation of T- and X-shaped polyphilic molecules exhibiting honeycomb columnar phases. Soft Matter, 2009, 5: 346–353

    Article  CAS  Google Scholar 

  23. Lintuvuori JS, Wilson MR. A new anisotropic soft-core model for the simulation of liquid crystal mesophases. J Chem Phys, 2008, 128: 044906

    Article  Google Scholar 

  24. Lintuvuori JS, Wilson MR. A coarse-grained simulation study of mesophase formation in a series of rod-coil multiblock copolymers. Phys Chem Chem Phys, 2009, 11: 2116–2125

    Article  CAS  Google Scholar 

  25. Cuesta JA, Frenkel D. Monte Carlo simulation of two-dimensional hard ellipses. Phys Rev A, 1990, 42: 2126–2136

    Article  Google Scholar 

  26. Rowan SJ. Polymer self-assembly: Micelles make a living. Nat Mater, 2009, 8: 89–91

    Article  CAS  Google Scholar 

  27. Wang X, Guerin G., Wang H, Wang Y, Manners I, Winnik MA. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science, 2007, 317: 644–647

    Article  CAS  Google Scholar 

  28. Wang X, Liu K, Arsenault AC, Rider DA, Ozin GA, Winnik MA, Manners I. Shell-cross-linked cylindrical polyisoprene-b-polyferro-cenylsilane (PI-b-PFS) block copolymer micelles: one-dimensional (1D) organometallic nanocylinders. J Am Chem Soc, 2007, 129: 5630–5639

    Article  CAS  Google Scholar 

  29. Hillmyer MA. Micelles made to order. Science, 2007, 317: 604–605

    Article  CAS  Google Scholar 

  30. Ewert KK, Evans HM, Zidovska A, Bouxsein NF, Ahmad A, Safinya CR. A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice. J Am Chem Soc, 2006, 128: 3998–4006

    Article  CAS  Google Scholar 

  31. Rulkens R, Wegner G, Thurn-Albrecht T. Cylindrical micelles of wormlike polyelectrolytes. Langmuir, 1999, 15: 4022–4025

    Article  CAS  Google Scholar 

  32. Yan Y, Besseling NAM, de Keizer A, Drechsler M, Fokkink R, Cohen Stuart MA. Wormlike aggregates from a supramolecular coordination polymer and a diblock copolymer. J Phys Chem B, 2007, 111: 11662–11669

    Article  CAS  Google Scholar 

  33. Li Z-W, Chen L-J, Zhao Y, Lu Z-Y. Ordered packing of soft discoidal system. J Phys Chem B, 2008, 112: 13842–13848

    Article  CAS  Google Scholar 

  34. Li Z-W, Sun Z-Y, Lu Z-Y. Simulation model for hierarchical self-assembly of soft disklike particles. J Phys Chem B, 2010, 114: 2353–2358

    Article  CAS  Google Scholar 

  35. Fodi B, Hentschke R. Simulated phase behavior of reversibly assembled polymers. J Chem Phys, 2000, 112: 6917

    Article  CAS  Google Scholar 

  36. Trofimov SY, Nies ELF, Michels MAJ. Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys, 2002, 117: 9383

    Article  CAS  Google Scholar 

  37. Trofimov SY, Nies ELF, Michels MAJ. Constant-pressure simulations with dissipative particle dynamics. J Chem Phys, 2005, 123: 144102

    Article  CAS  Google Scholar 

  38. Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987

    Google Scholar 

  39. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81: 3684

    Article  CAS  Google Scholar 

  40. Zewdie H. Computer-simulation studies of diskotic liquid crystals. Phys Rev E, 1998, 57: 1793–1805

    Article  CAS  Google Scholar 

  41. Frenkel D, Eppenga R. Evidence for algebraic orientational order in a two-dimensional hard-core nematic. Phys Rev A, 1985, 31: 1776–1787

    Article  CAS  Google Scholar 

  42. Polson JM, Frenkel D. First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio. Phys Rev E, 1997, 56: R6260–R6263

    Article  CAS  Google Scholar 

  43. Wilson MR. Molecular dynamics simulations of flexible liquid crystal molecules using a Gay-Berne/Lennard-Jones model. J Chem Phys, 1997, 107: 8654

    Article  CAS  Google Scholar 

  44. Xu J, Selinger RLB, Selinger JV, Ratna BR, Shashidhar R. Monte Carlo simulation of smectic liquid crystals and the electroclinic effect: The role of molecular shape. Phys Rev E, 1999, 60: 5584–5590

    Article  CAS  Google Scholar 

  45. Bates MA, Luckhurst GR. Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay-Berne mesogen. J Chem Phys, 1999, 110: 7087

    Article  CAS  Google Scholar 

  46. de Miguel E, del Río EM, Blas FJ. Stability of smectic phases in the Gay-Berne model. J Chem Phys, 2004, 121: 11183

    Article  Google Scholar 

  47. Cinacchi G., Gaetani LD, Tani A. Numerical study of a calamitic liquid-crystal model: Phase behavior and structure. Phys Rev E, 2005, 71: 031703

    Article  Google Scholar 

  48. Peón J, Saucedo-Zugazagoitia J, Pucheta-Mendez F, Perusquía RA, Sutmann G, Quintana-H J. Two-dimensional chiral model for liquid crystals, bent hard needles: A Monte Carlo simulation. J Chem Phys, 2006, 125: 104908

    Article  Google Scholar 

  49. Gabriel AT., Meyer T, Germano G. Molecular graphics of convex body fluids. J Chem Theory Comput, 2008, 4: 468–476

    Article  CAS  Google Scholar 

  50. Martínez-Haya B, Cuetos A. Stability of nematic and smectic phases in rod-like mesogens with orientation-dependent attractive interactions. J Phys Chem B, 2007, 111: 8150–8157

    Article  Google Scholar 

  51. Aoki KM, Yonezawa F. Molecular dynamics studies of smectic B liquid crystals of soft parallel spherocylinders with sixfold bond orientational order. Phys Rev Lett, 1992, 69: 2780–2782

    Article  CAS  Google Scholar 

  52. Aoki KM, Yonezawa F. Constant-pressure molecular-dynamics simulations of the crystal-smectic transition in systems of soft parallel spherocylinders. Phys Rev A, 1992, 46: 6541–6549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongYuan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Liu, Y., Liu, Y. et al. A single-site anisotropic soft-core model for the study of phase behavior of soft rodlike particles. Sci. China Chem. 54, 1474–1483 (2011). https://doi.org/10.1007/s11426-011-4333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4333-8

Keywords

Navigation