Skip to main content
Log in

Bio-inspired smart gating nanochannels based on polymer films

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this review we have summarized some recent results mainly reported by our group that focused on the development of smart gating nanochannels based on polymer films. These nanochannels were prepared using a track-etch process. The responsive materials/molecules and modification methods/techniques have also been demonstrated, from which we have obtained a series of smart gating nanochannels that can respond to single/dual external stimuli, e.g., pH, ion, temperature, light, and so on. These studies utilize responsive behaviors to regulate ionic transport properties inside a single nanochannel and demonstrate the feasibility of designing other smart nanodevices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille B. Ion Channels of Excitable Membranes. Sinauer Associates Inc. Edition 3, 2001

  2. Eisenberg B. Ionic channels in biological membranes: Natural nanotubes. Acc Chem Res, 1998, 31: 117–123

    Article  CAS  Google Scholar 

  3. Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature, 2002, 418: 942–948

    Article  CAS  Google Scholar 

  4. Beckstein O, Biggin PC, Bond P, Bright JN, Domene C, Grottesi A, Holyoake J, Sansom MSP. Ion channel gating: Insights via molecular simulations. FEBS Lett, 2003, 555: 85–90

    Article  CAS  Google Scholar 

  5. Sisson AL, Shah MR, Bhosale S, Matile S. Synthetic ion channels and pores (2004–2005). Chem Soc Rev, 2006, 35: 1269–1286

    Article  CAS  Google Scholar 

  6. Sexton LT, Horne LP, Martin CR. Developing synthetic conical nanopores for biosensing applications. Mol Biosyst, 2007, 3: 667–685

    Article  CAS  Google Scholar 

  7. Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev, 2011, 40, 2385–2401

    Article  CAS  Google Scholar 

  8. Ghadiri MR, Granja JR, Buehler LK. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 1994, 369: 301–304

    Article  CAS  Google Scholar 

  9. Trofin L, Lee SB, Mitchell DT, Martin CR. A ligand-gated ion-channel mimetic nanopore membrane with an on-board transmembrane microbattery. J Nanosci Nanotechnol, 2004, 4: 239–244

    Article  CAS  Google Scholar 

  10. Wen L, Hou X, Tian Y, Nie FQ, Song Y, Zhai J, Jiang L. Bioinspired smart gating of nanochannels toward photoelectric-conversion systems. Adv Mater, 2010, 22: 1021–1024

    CAS  Google Scholar 

  11. Xia F, Guo W, Mao Y, Hou X, Xue J, Xia H, Wang L, Song Y, Ji H, Ouyang Q, Wang Y, Jiang L. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc, 2008, 130: 8345–8350

    Article  CAS  Google Scholar 

  12. Hou X, Yang F, Li L, Song Y, Jiang L, Zhu D. A biomimetic asymmetric responsive single nanochannel. J Am Chem Soc, 2010, 132: 11736–11742

    Article  CAS  Google Scholar 

  13. Tian Y, Hou X, Wen L, Guo W, Song Y, Sun H, Wang Y, Jiang L, Zhu D. A biomimetic zinc activated ion channel. Chem Commun, 2010, 46: 1682–1684

    Article  CAS  Google Scholar 

  14. Guo W, Xia H, Xia F, Hou X, Cao L, Wang L, Xue J, Zhang G, Song Y, Zhu D, Wang Y, Jiang L. Current rectification in temperature-responsive single nanopores. ChemPhysChem, 2010, 11: 859–864

    Article  CAS  Google Scholar 

  15. Guo W, Xia H, Cao L, Xia F, Wang S, Zhang G, Song Y, Wang Y, Jiang L, Zhu D. Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv Funct Mater, 2010, 20: 3561–3567

    Article  CAS  Google Scholar 

  16. Hou X, Guo W, Xia F, Nie F-Q, Dong H, Tian Y, Wen L, Wang L, Cao L, Yang Y, Xue J, Song Y, Wang Y, Liu D, Jiang L. A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc, 2009, 131: 7800–7805

    Article  CAS  Google Scholar 

  17. Hou X, Liu Y, Dong H, Yang F, Li L, Jiang L. A pH-gating ionic transport nanodevice: Asymmetric chemical modification of single nanochannels. Adv Mater, 2010, 22: 2440–2443

    Article  CAS  Google Scholar 

  18. Martin CR, Siwy ZS. Chemistry: Learning nature’s way: Biosensing with synthetic nanopores. Science, 2007, 317: 331–332

    Article  CAS  Google Scholar 

  19. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA. The potential and challenges of nanopore sequencing. Nat Biotechnol, 2008, 26: 1146–1153

    Article  CAS  Google Scholar 

  20. Austin R. Nanopores-The art of sucking spaghetti. Nat Mater, 2003, 2: 567–568

    Article  CAS  Google Scholar 

  21. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett, 2009, 9: 2788–2793

    Article  CAS  Google Scholar 

  22. Siwy ZS, Powell MR, Petrov A, Kalman E, Trautmann C, Eisenberg RS. Calcium-induced voltage gating in single conical nanopores. Nano Lett, 2006, 6: 1729–1734

    Article  CAS  Google Scholar 

  23. Vlassiouk I, Smirnov S, Siwy ZS. Ionic selectivity of single nanochannels. Nano Lett, 2008, 8: 1978–1985

    Article  CAS  Google Scholar 

  24. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes, J Am Chem Soc, 2009, 131: 2070–2071

    Article  CAS  Google Scholar 

  25. Wen L, Hou X, Tian Y, Zhai J, Jiang L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv Funct Mater, 2010, 20: 2636–2642

    Article  CAS  Google Scholar 

  26. Guo W, Cao L, Xia J, Nie FQ, Ma W, Xue J, Song Y, Zhu D, Wang Y, Jiang L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv Funct Mater, 2010, 20: 1339–1344

    Article  CAS  Google Scholar 

  27. Van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett, 2006, 6: 2232–2237

    Article  Google Scholar 

  28. Siwy ZS, Davenport M. Biosensors: Making nanopores from nanotubes. Nat Nanotechnol, 2010, 5: 174–175

    Article  CAS  Google Scholar 

  29. Griffiths J. The realm of the nanopore. Anal Chem, 2008, 80: 23–27

    Article  CAS  Google Scholar 

  30. Vlassiouk I, Kozel TR, Siwy ZS. Biosensing with nanofluidic diodes. J Am Chem Soc, 2009, 131: 8211–8220

    Article  CAS  Google Scholar 

  31. Banerjee P, Perez I, Henn-Lecordier L, Lee SB, Rubloff GW. Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat Nanotechnol, 2009, 4: 292–296

    Article  CAS  Google Scholar 

  32. Corry B. Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B, 2007, 112: 1427–1434

    Article  Google Scholar 

  33. Wu S, Park SR, Ling XS. Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett, 2006, 6: 2571–2576

    Article  CAS  Google Scholar 

  34. Kalman EB, Vlassiouk I, Siwy ZS. Nanofluidic bipolar transistors. Adv Mater, 2008, 20: 293–297

    Article  CAS  Google Scholar 

  35. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater, 2003, 2: 537–540

    Article  CAS  Google Scholar 

  36. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Ion-beam sculpting at nanometre length scales. Nature, 2001, 412: 166–169

    Article  CAS  Google Scholar 

  37. White RJ, Ervin EN, Yang T, Chen X, Daniel S, Cremer PS, White HS. Single ion-channel recordings using glass nanopore membranes. J Am Chem Soc, 2007, 129: 11766–11775

    Article  CAS  Google Scholar 

  38. Apel PY, Korchev YE, Siwy ZS, Spohr R, Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum. Methods Phys Res, Sect B, 2001, 184: 337–346

    Article  CAS  Google Scholar 

  39. Gyurcsányi RE. Chemically-modified nanopores for sensing. Trends Anal Chem, 2008, 27: 627–639

    Article  Google Scholar 

  40. Siwy ZS, Apel P, Baur D, Dobrev DD, Korchev YE, Neumann R, Spohr R, Trautmann C, Voss K-O. Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf Sci, 2003, 532–535: 1061–1066

    Article  Google Scholar 

  41. Dekker C. Solid-state nanopores. Nat Nanotechnol, 2007, 2: 209–215

    Article  CAS  Google Scholar 

  42. Yusko EC, An R, Mayer M. Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano, 2009, 4: 477–487

    Article  Google Scholar 

  43. He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS. Tuning transport properties of nanofluidic devices with local charge inversion. J Am Chem Soc, 2009, 131: 5194–5202

    Article  CAS  Google Scholar 

  44. Kovarik ML, Zhou K, Jacobson SC. Effect of conical nanopore diameter on ion current rectification. J Phys Chem B, 2009, 113: 15960–15966

    Article  CAS  Google Scholar 

  45. Siwy ZS. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater, 2006, 16: 735–746

    Article  CAS  Google Scholar 

  46. Kalman E, Sudre O, Vlassiouk I, Siwy ZS. Control of ionic transport through gated single conical nanopores. Anal Bioanal Chem, 2009, 394: 413–419

    Article  CAS  Google Scholar 

  47. Siwy ZS, Fulinski A. A nanodevice for rectification and pumping ions. Am J Phys, 2004, 72: 567–574

    Article  CAS  Google Scholar 

  48. Siwy ZS, Heins E, Harrell CC, Kohli P, Martin CR. Conical-nanotube ion-current rectifiers: The role of surface charge. J Am Chem Soc, 2004, 126: 10850–10851

    Article  CAS  Google Scholar 

  49. Wanunu M, Meller A. Chemically modified solid-state nanopores. Nano Lett, 2007, 7: 1580–1585

    Article  CAS  Google Scholar 

  50. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Adv Mater, 2008, 20: 2842–2858

    Article  CAS  Google Scholar 

  51. Wang S, Song Y, Jiang L. Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C, 2007, 8: 18–29

    Article  CAS  Google Scholar 

  52. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small, 2009, 5: 1287–1291

    Article  CAS  Google Scholar 

  53. Ito T, Hioki T, Yamaguchi T, Shinbo T, Nakao S-I, Kimura S. Development of a molecular recognition ion gating membrane and estimation of its pore size control. J Am Chem Soc, 2002, 124: 7840–7846

    Article  CAS  Google Scholar 

  54. Gutman M, Huppert D, Pines E. The pH jump: A rapid modulation of pH of aqueous solutions by a laser pulse. J Am Chem Soc, 1981, 103: 3709–3713

    Article  CAS  Google Scholar 

  55. Wu J, Eisenberg A. Proton diffusion across membranes of vesicles of poly(styrene-b-acrylic acid) diblock copolymers. J Am Chem Soc, 2006, 128: 2880–2884

    Article  CAS  Google Scholar 

  56. Irie M. Light-induced reversible pH change. J Am Chem Soc, 2002, 105: 2078–2079

    Article  Google Scholar 

  57. Heins EA, Siwy ZS, Baker LA, Martin CR. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett, 2005, 5: 1824–1829

    Article  CAS  Google Scholar 

  58. Banghart MR, Volgraf M, Trauner D. Engineering light-gated ion channels. Biochemistry, 2006, 45: 15129–15141

    Article  CAS  Google Scholar 

  59. Liu N, Dunphy DR, Atanassov P, Bunge SD, Chen Z, López GP, Boyle TJ, Brinker CJ. Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett, 2004, 4: 551–554

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, L., Jiang, L. Bio-inspired smart gating nanochannels based on polymer films. Sci. China Chem. 54, 1537–1546 (2011). https://doi.org/10.1007/s11426-011-4324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4324-9

Keywords

Navigation