Skip to main content
Log in

Synthesis and shape memory behavior study of hyperbranched poly(urethane-tetrazole)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel hyperbranched poly(urethane-tetrazole) (HPUTZ) was synthesized via the “A2+BB2′ ” approach using hexadiisocyanate (HDI) and 3-(bis-(2-hydroxyethyl)) aminopropyltetrazole (HAPTZ). The molecular structure was characterized by FTIR and 1H NMR spectroscopy. The number average molecular weight was measured to be 1.05×104 g/mol with a polydispersity of 1.27 by GPC analysis. The HPUTZ was further cured by the semi-adduct (PEG-IPDI) from polyethylene glycol (PEG) reacting with isophorone diisocyanate (IPDI) to form the crosslinked HAPTZ-PU film in different ratio of HAPTZ to PEG-IPDI. The glass transition temperature of HAPTZ-PU increased from 44.9 to 56.4 °C as the HPUTZ content increased from 20% to 33% from the DSC analysis. The DMA results indicated that the HPUTZ-PU with 20% HPUTZ possessed the highest storage modulus and loss tangent. However, the storage modulus increased with the increasing of HPUTZ segment at higher temperature. The shape memory study showed that all the films presented the excellent shape memory function. Over 98% shape recovery could be obtained for the HAPTZ-PU with 20%–33% HAPTZ segment content within 60 s in the tension deformation test and within 40 s at 80 °C in the bend deformation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee BS, Chun BC, Chung YC, SuI KI, Cho JW. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules, 2001, 34(18): 6431–6437

    Article  CAS  Google Scholar 

  2. Cho JW, Kim JW, Jung YC, Goo NS. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun, 2005, 26(5): 412–416

    Article  CAS  Google Scholar 

  3. Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed, 2002, 41(12): 2034–2057

    Article  CAS  Google Scholar 

  4. Wang MT, Zhang L. Recovery as a measure of oriented crystalline structure in poly(ether ester)s based on poly(ethylene oxide) and poly(ethylene terephthalate) used as shape memory polymers. J Polym Sci Part B: Polym Phys, 1999, 37(2): 101–112

    Article  CAS  Google Scholar 

  5. Jeong HM, Lee SY, Kim BK. Shape memory polyurethane containing amorphous reversible phase. J Mater Sci, 2000, 35(7): 1579–1583

    Article  CAS  Google Scholar 

  6. Jae HY, Byoung CC, Chan CY, Jae HC. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 2003, 44(11): 3251–3258

    Article  Google Scholar 

  7. Tsai CC, Jen RJ. Side chain dendritic polyurethanes with shape-memory effect. J Mater Chem, 2009, 19: 8484–8494

    Article  CAS  Google Scholar 

  8. Chen SJ, Hu JL, Yuen WC, Chan LK. Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer, 2009, 50(19): 4424–4428

    Article  CAS  Google Scholar 

  9. Brukley CP, Prisacariu C, Caraculacu A. Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer, 2007, 48(5): 1388–1396

    Article  Google Scholar 

  10. D’hollander S, Assche GV, Mele BV, Prez FD. Novel synthetic strategy toward shape memory polyurethanes with a well-defined switching temperature. Polymer, 2009, 50(19): 4447–4454

    Article  Google Scholar 

  11. Gunes IS, Cao F, Jana SC. Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer, 2008, 49(9): 2223–2234

    Article  CAS  Google Scholar 

  12. Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296: 1673

    Article  Google Scholar 

  13. Zhu G, Liang G, Xu Q, Yu Q. Shape-memory effects of radiation crosslinked poly(epsilon-caprolactone). J Appl Polym Sci, 2003, 90(6): 1589–1595

    Article  CAS  Google Scholar 

  14. Lendlein A, Schmidt AM, Schroeter M, Langer R. Shape-memory polymer networks from oligo(epsilon-caprolactone)dimethacrylates. J Polym Sci Part A: Polym Chem, 2005, 43(7): 1369–1381

    Article  CAS  Google Scholar 

  15. Cao Q, Liu PS. Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polymer Bulletin, 2006, 57: 889–899

    Article  CAS  Google Scholar 

  16. Sivakumar C, Nasar AS. Poly(epsilon-caprolactone)-based hyperbranched polyurethanes prepared via A(2) + B-3 approach and its shapememory behavior. Eur Polym J, 2009, 45(8): 2329–2337

    Article  CAS  Google Scholar 

  17. Hickner MA, Ghassemi H, Kim YS, McGrath EJE. Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev, 2004, 104: 4587

    Article  CAS  Google Scholar 

  18. Lavrenova LG, Larionov SV. Spin transition in iron (II) complexes with 1,2,4-triazoles and tetrazoles. Russ J Coord Chem, 1998, 24: 379–395

    CAS  Google Scholar 

  19. Nicolay VT, Bernaerts KV, Dufour B, Prez FED, Matyjaszewski K. Well-defined (Co) polymers with 5-vinyltetrazole unites via combination of atom transfer radical (co)polymerization of acrylonitrile and “Click Chemistry”-type postpolymerization modification. Macromolecules, 2004, 37: 9308

    Article  Google Scholar 

  20. Levchik SV, Balabanovich AI, Ivashkevich OA, Gaponik PN, Thermal decomposition of tetrazole-containing polymer. V. Poly-1-vinyl-5-aminotetrazole. Polym Degrad Stab, 1995, 47: 333–338

    CAS  Google Scholar 

  21. Celik SÜ, Bozkurt A, Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate). Eur Polym J, 2008, 44: 213–218

    Article  CAS  Google Scholar 

  22. Ji FL, Hu JL, Li TC, Wong YW. Morphology and shape memory effect of segmented polyurethanes. I. With crystalline reversible phase. Polymer, 2007, 48(17): 5133–5145

    Article  CAS  Google Scholar 

  23. Shi WF, Rånby B. Photopolymerization of dendritic methacrylated polyesters. 1. Synthesis and properties. J Appl Polym Sci, 1996, 59(12): 1937–1945

    CAS  Google Scholar 

  24. Kou HG, Asif A, Shi WF, Jiang ZG, Huang WHA novel hyperbranched polyester acrylate used for microfabrications. Polym Adv Technol, 2004, 15: 192–196

    Article  CAS  Google Scholar 

  25. Zhang Y, Fu Q, Shi WF. Synthesis and intrinsic blue fluorescence study of hyperbranched poly(ester-amide-ether). Sci China Chem, 2010, 53(12): 2452–2460

    Article  CAS  Google Scholar 

  26. Xu JW, Shi WF, Pang WM. Synthesis and shape memory effects of Si-O-Si cross-linked hybrid polyurethanes. Polymer, 2006, 47(1): 457–465

    Article  CAS  Google Scholar 

  27. Jeong HM, Ahn BH, Kim BK. Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments. Polym Int, 2000, 49(12): 1714–1721

    Article  CAS  Google Scholar 

  28. Voit B. Hyperbranched polymers—All problems solved after 15 years of research? J Polym Sci Part A: Polym Chem, 2005, 43(13): 2679–2699

    Article  CAS  Google Scholar 

  29. Gao C, Yan DY. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29(3): 183–275

    Article  CAS  Google Scholar 

  30. Spindler R, Fréchet J. Macromolecules, Synthesis and characterization of hyperbranched polyurethanes prepared from blocked isocyanate monomers by step-growth polymerization. 1993, 26(18): 4809–4813

    CAS  Google Scholar 

  31. Cao Q, Chen SJ, Hu JL, Liu PS. Study on the liquefied-MDI-based shape memory polyurethanes. J Appl Polym Sci, 2007, 106(2): 993–1000

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenFang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, L., Asif, A. & Shi, W. Synthesis and shape memory behavior study of hyperbranched poly(urethane-tetrazole). Sci. China Chem. 54, 1461–1467 (2011). https://doi.org/10.1007/s11426-011-4316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4316-9

Keywords

Navigation