Skip to main content
Log in

Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Interfacial transfer plays an important role in multi-phase chemical processes. However, it is difficult to describe the complex interfacial transport behavior by the traditional mass transfer model. In this paper, we describe an interfacial mass transfer model based on linear non-equilibrium thermodynamics for the analysis of the rate of interfacial transport. The interfacial transfer process rate J depends on the interface mass transfer coefficient K, interfacial area A and chemical potential gradient Δµ at the interface. Potassium compounds were selected as model systems. A model based on linear non-equilibrium thermodynamics was established in order to describe and predict the transport rate at the solid-solution interface. Together with accurate experimental kinetic data for potassium ions obtained using ion-selective electrodes, a general model which can be used to describe the dissolution rate was established and used to analyze ways of improving the process rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li HZ. Focus attention on structure, interface and multi-scale issues to open up new mileage of chemical engineering. Chinese J Process Eng, 2006, 6: 991–996

    CAS  Google Scholar 

  2. Wang F, Saidel GM, Gao J. A mechanistic model of controlled drug release from polymer millirods: Effects of excipients and complex binding. J Control Release, 2007, 119: 111–120

    Article  CAS  Google Scholar 

  3. Salem MR, Mangood AH, Hamdona SK. Dissolution of calcite crystals in the presence of some metal ions. J Mater Sci, 1994, 29: 6463–6467

    Article  CAS  Google Scholar 

  4. Narasimhan B. Mathematical models describing polymer dissolution: Consequences for drug delivery. Adv Drug Deliv Rev, 2001, 48: 195–210

    Article  CAS  Google Scholar 

  5. Moore T, Croy S, Mallapragada S, Pandit N. Experimental investigation and mathematical modeling of Pluronic® F127 gel dissolution: Drug release in stirred systems. J Control Release, 2000, 67: 191–202

    Article  CAS  Google Scholar 

  6. Laitinen R, Lahtinen J, Silfsten P, Vartiainen E, Jarho P, Ketolainen J. An optical method for continuous monitoring of the dissolution rate of pharmaceutical powders. J Pharmaceut Biomed Anal, 2010, 52: 181–189

    Article  CAS  Google Scholar 

  7. Ji XY, Chen DL, Wei T, Lu XH, Wang YR, Shi J. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode. Chem Eng Sci, 2001, 56: 7017–7024

    Article  CAS  Google Scholar 

  8. Abdallah R, Magnico P, Fumey B, Bellefon CD. CFD and kinetic methods for mass transfer determination in a mesh microreactor. AIChE J, 2006, 52: 2230–2237

    CAS  Google Scholar 

  9. Chow AW. Lab-on-a-chip: Opportunities for chemical engineering. AIChE J, 2002, 48: 1590–1595

    Article  CAS  Google Scholar 

  10. Jensen KF. Microchemical systems: Status, challenges, and opportunities. AIChE J, 1999, 45: 2051–2054

    Article  CAS  Google Scholar 

  11. Jensen KF. Microreaction engineering-Is small better? Chem Eng Sci, 2001, 56: 293–303

    Article  CAS  Google Scholar 

  12. Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science, 2004, 304: 1305–1308

    Article  CAS  Google Scholar 

  13. Hsing IM, Srinivasan R, Harold MP, Jensen KF, Schmidt MA. Simulation of micromachined chemical reactors for heterogeneous partial oxidation reactions. Chem Eng Sci, 2000, 55: 3–13

    Article  Google Scholar 

  14. Tagawa T, Aljbour S, Matouq M, Yamada H. Micro-channel reactor with guideline structure for organic-aqueous binary system. Chem Eng Sci, 2007, 62: 5123–5126

    Article  CAS  Google Scholar 

  15. Delamarche E, Juncker D, Schmid H. Microfluidics for processing surfaces and miniaturizing biological assays. Adv Mater, 2005, 17: 2911–2933

    Article  CAS  Google Scholar 

  16. Jähnisch K, Hessel V, Löwe H, Baerns M. Chemistry in microstructured reactors. Angew Chem Int Ed, 2004, 43: 406–446

    Article  Google Scholar 

  17. Lin XZ, Terepka AD, Yang H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett, 2004, 4: 2227–2232

    Article  CAS  Google Scholar 

  18. Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT. Greener approaches to organic synthesis using microreactor technology. Chem Rev, 2007, 107: 2300–2318

    Article  CAS  Google Scholar 

  19. Stone HA, Kim S. Microfluidics: Basic issues, applications, and challenges. AIChE J, 2001, 47: 1250–1254

    Article  CAS  Google Scholar 

  20. Zhao Y, Chen G, Yuan Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J, 2006, 52: 4052–4060

    Article  CAS  Google Scholar 

  21. Zhang SX, Li YG, He XF. Research progress and application of non-equilibrium thermodynamics (in Chinese). Hydrometall China, 2007, 26: 169–174

    CAS  Google Scholar 

  22. Demirel Y, Sandler SI. Nonequilibrium thermodynamics in engineering and science. J Phys Chem B, 2003, 108: 31–43

    Article  Google Scholar 

  23. Hu Y. Physical Chemistry (4th ed.). Beijing: Higher Education Press, 2005

    Google Scholar 

  24. Huang LL, Shao Q, Lu LH, Lu XH, Zhang LZ, Wang J, Jiang SY. Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes. Phys Chem Chem Phys, 2006, 8: 3836–3844

    Article  CAS  Google Scholar 

  25. Zhu YD, Wei MJ, Shao Q, Lu LH, Lu XH, Shen WF. Molecular dynamics study of pore inner wall modification effect in structure of water molecules confined in single-walled carbon nanotubes. J Phys Chem C, 2009, 113: 882–889

    Article  CAS  Google Scholar 

  26. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312: 1034–1037

    Article  CAS  Google Scholar 

  27. Rasaiah JC, Garde S, Hummer G. Water in nonpolar confinement: From nanotubes to proteins and beyond. Ann Rev Phys Chem, 2008, 59: 713–740

    Article  CAS  Google Scholar 

  28. Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. J Chem Phys, 1982, 76: 5599–5605

    Article  CAS  Google Scholar 

  29. Dejmek M, Ward CA. A statistical rate theory study of interface concentration during crystal growth or dissolution. J Chem Phys, 1998, 108: 8698–8704

    Article  CAS  Google Scholar 

  30. Liu C, Feng X, Ji XY, Chen DL, Wei T, Lu XH. The study of dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions with a statistical rate theory. Chin J Chem Eng, 2004, 12: 128–130

    CAS  Google Scholar 

  31. Liu C, Studies on thermodynamics and kinetics of preparation process for potassium titanate whiskers. PhD thesis. Nanjing University of Technology, June 2003

  32. Sasaki T, Watanabe M, Komatsu Y, Fujiki Y. Layered hydrous titanium dioxide: Potassium ion exchange and structural characterization. Inorg Chem, 1985, 24: 2265–2271

    Article  CAS  Google Scholar 

  33. Bao NZ, Lu XH, Ji XY, Feng X, Xie JW. Thermodynamic modeling and experimental verification for ion-exchange synthesis of K2O·6TiO2 and TiO2 fibers from K2O·4TiO2. Fluid Phase Equil, 2002, 193: 229–243

    Article  CAS  Google Scholar 

  34. He M, Feng X, Lu XH, Ji XY, Liu C, Bao NZ, Xie JW. Application of an ion-exchange model to the synthesis of fibrous titanate derivatives. J Chem Eng Jpn, 2003, 36: 1259–1262

    Article  CAS  Google Scholar 

  35. Ji YH, Thermodynamic research for CO2 and representative pollutant removal and complex solid-solution systems. PhD thesis. Nanjing University of Technology, June 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHua Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Ji, Y. & Liu, H. Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer. Sci. China Chem. 54, 1659–1666 (2011). https://doi.org/10.1007/s11426-011-4308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4308-9

Keywords

Navigation