Skip to main content
Log in

Structural properties of hydroxyl-substituted alkyl benzenesulfonates at the water/vapor and water/decane interfaces

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed to investigate the structural properties of hydroxyl-substituted alkyl benzenesulfonate monolayers formed at the water/vapor and water/decane interfaces. We report a detailed study of the interfacial properties—liquid density profile, hydrogen bond structure, surfactant aggregate structure and order parameter—of the novel anionic surfactant, sodium 2-hydroxy-3-decyl-5-octylbenzenesulfonate (C10C8OHphSO3Na). Simulation results show that: with increasing number of surfactant molecules, the average number of intramolecular hydrogen bonds per surfactant molecule in the monolayer decreases, but the structures forming the intramolecular hydrogen bonds still play a dominant role; the hydrophobic part of the alkyl tail chain, especially the decyl substituent on the third carbon atom in the benzene ring, becomes straighter, and more ordered towards the external interface at higher surfactant coverage; two-dimensional radial distribution functions can describe the characteristic of surfactant aggregate structures and highlight the decane phase effect on the orientation of the hydrophobic part of the surfactant; the surfactant molecules readily form long-range hydrogen bonded structures. Our results are an important complement to experimental studies. We used the all-atom model by employing the GROMACS and ffAMBER programs in the simulations, which provides a new way to simulate the interfacial behavior of alkyl benzenesulfonate surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner FN. Relation of molecular structure to detergency of some alkylbenzene sulfonates. Ind Eng Chem, 1954, 46: 1349–1352

    Article  Google Scholar 

  2. Doe PH, Wade WH. Schechter S. Alkyl benzene sulfonates for producing low interfacial tensions between hydrocarbons and water. J Colloid Interface Sci, 1977, 59: 525–531

    Article  CAS  Google Scholar 

  3. Doe PH, El-Emary M, Wade WH, Schechter RS. Surfactants for producing low interfacial tension II. Linear alkylbenzene sulfonates with additional alkyl groups. J Am Oil Chem Soc, 1977, 54: 570–512

    Article  CAS  Google Scholar 

  4. Yang J, Qiao WH, Li ZS, Cheng LB. Effects of branching in hexadecylbenzene sulfonate isomers on interfacial tension behavior in oil/alkali systems. Fuel, 2005, 84: 1607–1611

    CAS  Google Scholar 

  5. Wang L. The synthesis of branched-alkylbenzenesulfonates and their properties of interface and solutions. Ph. D. Dissertation (in Chinese). Beijing: Graduate University of Chinese Academy of Sciences, 2004

    Google Scholar 

  6. Gong QT. The synthesis of sodium mulit-alkylbenzene sulfonates and their properties of interface and solutions. Ph. D. Dissertation (in Chinese). Beijing: Graduate University of Chinese Academy of Sciences, 2005

    Google Scholar 

  7. Jiang XM. The synthesis of branched trialkylbenzenesulfonates and their properties of interface and bulk. Ph. D. Dissertation (in Chinese). Beijing: Graduate University of Chinese Academy of Sciences, 2005

    Google Scholar 

  8. Shi FQ. The relationship between structures and properties of branched-alkylbenzenesulfonates by molecular design. Ph. D. Dissertation (in Chinese). Beijing: Graduate University of Chinese Academy of Sciences, 2005

    Google Scholar 

  9. Jang SS, Lin ST, Maiti PK, Blanco M, Goddard III WA, Shuler P, Tang YC. Molecular dynamics study of a surfactant-mediated decane-water interface: Effect of molecular architecture of alkyl benzene sulfonate. J Phys Chem B, 2004, 108: 12130–12140

    Article  CAS  Google Scholar 

  10. Li Y, Zhang P, Dong FL, Cao XL, Song XW, Cui XH. The array and interfacial activity of sodium dodecyl benzene sulfonate and sodium oleate at the oil/water interface. J Colloid Interface Sci, 2005, 290: 275–280

    Article  CAS  Google Scholar 

  11. Xiao HY, Zhen Z, Sun HQ, Cao XL, Li ZQ, Song XW, Cui XH, Liu XH. Molecular dynamics simulation of anionic surfactant at the water/n-alkane interface. Acta Phys-Chim Sin, 2010, 26: 422–428

    CAS  Google Scholar 

  12. Zhao TT, Xu GY, Yuan SL, Chen YJ, Yan H. Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. J Phys Chem B, 2010, 114: 5025–5033

    Article  CAS  Google Scholar 

  13. Shi L, Tummala NR, Striolo A. C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir, 2010, 26: 5462–5474

    Article  CAS  Google Scholar 

  14. Huang YP, Zhang L, Zhang L, Luo L, Zhao S, Yu JY. Dynamic interfacial dilational properties of hydroxy-substituted alkyl benzenesulfonates. J Phys Chem B, 2007, 111: 5640–5647

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003

    Google Scholar 

  16. Martinez JM, Martinez L. Packing optimization for the automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem, 2003, 24: 819–825

    Article  CAS  Google Scholar 

  17. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem, 2004, 25: 1157–1174

    Article  CAS  Google Scholar 

  18. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field: Erratum. J Comput Chem, 2005, 26: 114

    Article  CAS  Google Scholar 

  19. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman P A. AMBER 9, 2006

  20. Bayly CI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges the RESP model. J Phys Chem, 1993, 97: 10269–10280

    Article  CAS  Google Scholar 

  21. Berendsen HJC, Postma JPM, Gunsteren WF, Hermans J. Intermolecular Forces. Reidel: Dordrecht, 1981

    Google Scholar 

  22. Hess B, Bekker H, Berendsen HJC, Fraaije JGE M. LINCS: A linear constraint solver for molecular simulations. J Comput Chem, 1997, 18: 1463–1472

    Article  CAS  Google Scholar 

  23. Nose S, Klein ML. A study of solid and liquid carbon tetrafluoride using the constant pressure molecular-dynamics technique. J Chem Phys, 1983, 78: 6928–6939

    Article  CAS  Google Scholar 

  24. Nose S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81: 511–519

    Article  CAS  Google Scholar 

  25. Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985, 31: 1695–1697

    Article  Google Scholar 

  26. Parrinello M, Rahman A. Crystal-structure and pair potentials: A molecular-dynamics study. J Appl Phys, 1981, 52: 7182–7190

    Article  CAS  Google Scholar 

  27. Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys, 1983, 50: 1055–1076

    Article  Google Scholar 

  28. Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, van Drunen R, van der Spoel D, Sijbers A, Keegstra H, Reitsma B, Renardus MKR. Gromacs: A parallel computer for molecular dynamics simulations. In: de Groot RA, Nadrchal J, Eds., Physics Computing 92. Singapore: World Scientific 1993

    Google Scholar 

  29. Berendsen HJC, van der Spoel D, van Drunen R. Gromacs: A message-passing parallel molecular dynamics implementation. Comp Phys Comm, 1995, 91: 43–56

    Article  CAS  Google Scholar 

  30. Lindahl E, Hess B, van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J Mol Mod, 2001, 7: 306–317

    CAS  Google Scholar 

  31. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. Gromacs: Fast, flexible and free. J Comp Chem, 2005, 26: 1701–1718

    Article  Google Scholar 

  32. Sorin EJ, Pande VS. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J, 2005, 88: 2472–2493

    Article  CAS  Google Scholar 

  33. Mobley DL, Chodera JD, Dill KA. On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys, 2006, 125: 084902

    Article  Google Scholar 

  34. Zeng ZQ. Organic Chemistry (in Chinese). Beijing: Higher Education Press, 1998. 33

    Google Scholar 

  35. Tsierkezos NG, Molinou IE. Thermodynamic properties of water plus ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J Chem Eng Data, 1998, 43: 989–993

    Article  CAS  Google Scholar 

  36. Benjamin I. Theoretical study of the water/1,2-dichloroethane interface: Structure, dynamics, and conformational equilibria at the liquid-liquid interface. J Chem Phys, 1992, 97: 1432–1445

    Article  CAS  Google Scholar 

  37. Schweighofer KJ, Essmann U, Berkowitz M. Simulation of sodium dodecyl sulfate at the water-vapor and water-carbon tetrachloride interfaces at low surface coverage. J Phys Chem B, 1997, 101: 3793–3799

    Article  CAS  Google Scholar 

  38. Hossain MM, Suzuki T, Kato T. Phases and phase transitions in Gibbs monolayers of an alkyl phosphate surfactant. J Colloid Interface Sci, 2005, 288: 342–349

    Article  CAS  Google Scholar 

  39. Baoukina S, Monticelli L, Marrink SJ, Tieleman DP. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir, 2007, 23: 12617–12623

    Article  CAS  Google Scholar 

  40. Giner-Casares JJ, Camacho L, Martín-Romero MT, López Cascales JJ. A DMPA Langmuir monolayer study: From gas to solid phase. An atomistic description by molecular dynamics simulation. Langmuir, 2008, 24: 1823–1828

    Article  CAS  Google Scholar 

  41. van Buuren AR, Marrink SJ, Berendsen HJC. A molecular dynamics study of the decane/water interface. J Phys Chem, 1993, 97: 9206–9212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HongYan Xiao or XinHou Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Xiao, H. & Liu, X. Structural properties of hydroxyl-substituted alkyl benzenesulfonates at the water/vapor and water/decane interfaces. Sci. China Chem. 54, 1078–1085 (2011). https://doi.org/10.1007/s11426-011-4305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4305-z

Keywords

Navigation