Copper-mediated synthesis of PdI2 colloidal spheres


A novel copper-mediated solvothermal method was proposed for synthesizing colloidal spheres of a new composition, palladium iodide (PdI2). Typical procedure was designed to involve the introduction of cupric chloride (CuCl2) as weak oxidant. CuCl2 was found to be essential for preventing the easy formation of palladium deposits as well as facilitating the synthesis and assembly. Under the co-effect of CuCl2 and the surfactant of polyvinylpyrrolidone (PVP), neutral PdI2 colloidal spheres with narrow size distribution were successfully produced. Such ion-assisted synthetic method is believed to be prospective in producing well-constructed nanostructures.

This is a preview of subscription content, log in to check access.


  1. 1 (a)

    Xia YN, Gates B, Yin YD, Lu Y. Monodispersed colloidal spheres: Old materials with new applications. Adv Mater, 2000, 12: 693–713

    Article  CAS  Google Scholar 

  2. 1 (b)

    Jeong U, Wang YL, Ibisate M, Xia YN. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Adv Funct Mater, 2005, 15: 1907–1921

    Article  CAS  Google Scholar 

  3. 2 (a)

    Vos WL, Sprik R, van Blaaderen A, Imhof A, Lagendijk A, Wegdam GH. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys Rev B, 1996, 53: 231–235

    Google Scholar 

  4. 2 (b)

    Tarhan II, Watson GH. Photonic band structure of fcc colloidal crystals. Phys Rev Lett, 1996, 76: 315–318

    Article  CAS  Google Scholar 

  5. 2 (c)

    Tarhan II, Zinkin MP, Watson GH. Interferometric technique for the measurement of photonic band structure in colloidal crystals. Opt Lett, 1995, 20: 1571–1573

    Article  CAS  Google Scholar 

  6. 2 (d)

    Ge JP, Yin YD. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv Mater, 2008, 20: 3485–3491

    Article  CAS  Google Scholar 

  7. 3 (a)

    Park SH, Xia YN. Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates. Chem Mater, 1998, 10: 1745–1747

    Article  CAS  Google Scholar 

  8. 3 (b)

    Park SH, Xia YN. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv Mater, 1998, 10: 1045–1048

    Article  CAS  Google Scholar 

  9. 3 (c)

    Gates B, Yin YD, Xia YN. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem Mater, 1999, 11: 2827–2836

    Article  CAS  Google Scholar 

  10. 3 (d)

    Johnson SA, Ollivier PJ, Mallouk TE. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283: 963–965

    Article  CAS  Google Scholar 

  11. 3 (e)

    Yoshino K, Lee SB, Tatsuhara S, Kawagishi Y, Ozaki M, Zakhidov AA. Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal. Appl Phys Lett, 1998, 73: 3506–3508

    Article  CAS  Google Scholar 

  12. 3 (f)

    Bertone JF, Jiang P, Hwang KS, Mittleman DM, Colvin VL. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys Rev Lett, 1999, 83: 300–303

    Article  CAS  Google Scholar 

  13. 3 (g)

    Jiang P, Cizeron J, Bertone JF, Colvin VL. Preparation of macroporous metal films from colloidal crystals. J Am Chem Soc, 1999, 121: 7957–7958

    Article  CAS  Google Scholar 

  14. 3 (h)

    Xue MJ, Xiao WT, Zhang ZJ. Porous films from transformation of polymeric sphere arrays. Adv Mater, 2008, 20: 439–442

    Article  CAS  Google Scholar 

  15. 3 (i)

    Tsung CK, Fan J, Zheng NF, Shi QH, Forman AJ, Wang JF, Stucky GD. A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem Int Ed, 2008, 47: 8682–8686

    Article  CAS  Google Scholar 

  16. 4 (a)

    Kim SH, Jeon SJ, Yang SM. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane. J Am Chem Soc, 2008, 130: 6040–6046

    Article  CAS  Google Scholar 

  17. 4 (b)

    Liu LP, Peng Q, Li YD. Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Res, 2008, 1: 403–411

    Article  CAS  Google Scholar 

  18. 4 (c)

    Li F, Yoo WC, Beernink MB, Stein A. Site-specific functionalization of anisotropic nanoparticles: From colloidal atoms to colloidal molecules. J Am Chem Soc, 2009, 131: 18548–18555

    Article  CAS  Google Scholar 

  19. 4 (d)

    Lee SH, Teshima K, Fujisawa M, Fujii S, Endo M, Oishi S. Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates. Phys Chem Chem Phys, 2009, 11: 3628–3633

    Article  CAS  Google Scholar 

  20. 4 (e)

    Mahajan S, Cole RM, Soares BF, Pelfrey SH, Russell AE, Baumberg JJ, Bartlett PN. Relating SERS intensity to specific plasmon modes on sphere segment void surfaces. J Phys Chem C, 2009, 113: 9284–9289

    Article  CAS  Google Scholar 

  21. 5 (a)

    Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci, 1968, 26: 62–69

    Article  Google Scholar 

  22. 5 (b)

    Kuhn JN, Huang WY, Tsung CK, Zhang YW, Somorjai GA. Structure sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc, 2008, 130: 14026–14027

    Article  CAS  Google Scholar 

  23. 5 (c)

    Li L, Tsung CK, Ming T, Sun ZH, Ni WH, Shi QH, Stucky GD, Wang JF. Multifunctional mesostructured silica microspheres from an ultrasonic aerosol spray. Adv Funct Mater, 2008, 18: 2956–2962

    Article  CAS  Google Scholar 

  24. 5 (d)

    Arshady R. Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid Polym Sci, 1992, 270: 717–732

    Article  CAS  Google Scholar 

  25. 6 (a)

    Ed: Piirma I. Emulsion Polymerization. New York: Academic, 1982

    Google Scholar 

  26. 6 (b)

    Eds: Poehlein GW, Ottewill RH, Goodwin JW. Science and Technology of Polymer Colloids, Vol. II, Boston: Martinus Nijhoff, 1983

    Google Scholar 

  27. 7

    Wang YL, Xia YN. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett, 2004, 4: 2047–2050

    Article  CAS  Google Scholar 

  28. 8 (a)

    Wang YL, Cai L, Xia YN. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater, 2005, 17: 473–477

    Article  CAS  Google Scholar 

  29. 8 (b)

    Jeong U, Xia YN. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew Chem Int Ed, 2005, 44: 3099–3103

    Article  CAS  Google Scholar 

  30. 8 (c)

    Jeong U, Kim JU, Xia YN. Monodispersed spherical colloids of Se@CdSe: Synthesis and use as building blocks in fabricating photonic crystals. Nano Lett, 2005, 5: 937–942

    Article  CAS  Google Scholar 

  31. 8 (d)

    Wang JW, Wang X, Peng Q, Li YD. Synthesis and characterization of bismuth singlecrystalline nanowires and nanospheres. Inorg Chem, 2004, 43: 7552–7556

    Article  CAS  Google Scholar 

  32. 9

    Deng H, Li XL, Peng Q, Wang X, Chen J, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed, 2005, 44: 2782–2785

    Article  CAS  Google Scholar 

  33. 10

    Chen C, Chen W, Lu J, Chu DR, Huo ZY, Peng Q, Li YD. Transition-metal phosphate colloidal spheres. Angew Chem Int Ed, 2009, 48: 4816–4819

    Article  CAS  Google Scholar 

  34. 11 (a)

    Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals, Angew Chem Int Ed, 2007, 46: 6650–6653

    Article  CAS  Google Scholar 

  35. 11 (b)

    Wang DS, Xie T, Peng Q, Li YD. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J Am Chem Soc, 2008, 130: 4016–4022

    Article  CAS  Google Scholar 

  36. 11 (c)

    Wang DS, Xie T, Peng Q, Zhang SY, Chen J, Li YD. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals, Chem Eur J, 2008, 14: 2507–2513

    Article  CAS  Google Scholar 

  37. 11 (d)

    Wang DS, Xie T, Li YD. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2: 30–46

    Article  CAS  Google Scholar 

  38. 12

    Beamish FE, Dale J. Determination of palladium by means of potassium iodide. Ind Eng Chem Anal Ed, 1938, 10: 697–698

    Article  CAS  Google Scholar 

  39. 13

    Mousset C, Provot O, Hamze A, Bignon J, Brion JD, Alami M. DMSO-PdI2 as a powerful oxidizing couple of alkynes into benzils: One-pot synthesis of nitrogen-containing five- or six-membered heterocycles. Tetrahedron, 2008, 64: 4287–4294

    Article  CAS  Google Scholar 

  40. 14

    Deng YQ, Li J, Ma SM. PdI2-catalyzed coupling-cyclization reactions involving two different 2,3-Allenols: An efficient synthesis of 4-(1′,3′-dien-2′-yl)-2,5-dihydrofuran derivatives. Chem Eur J, 2008, 14: 4263–4266

    Article  CAS  Google Scholar 

  41. 15

    Gabriele B, Salerno G, Costa M, Chiusoli GP. Recent developments in the synthesis of heterocyclic derivatives by PdI2-catalyzed oxidative carbonylation reactions. J Organometal Chem, 2003, 687: 219–228

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to YaDong Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gong, M., Niu, Z., Peng, Q. et al. Copper-mediated synthesis of PdI2 colloidal spheres. Sci. China Chem. 54, 1027–1031 (2011).

Download citation


  • colloidal sphere
  • palladium iodide
  • copper-mediated synthesis
  • solvothermal method
  • self-assembly