Science China Chemistry

, Volume 54, Issue 7, pp 1027–1031 | Cite as

Copper-mediated synthesis of PdI2 colloidal spheres

  • Ming Gong
  • ZhiQiang Niu
  • Qing Peng
  • YaDong LiEmail author


A novel copper-mediated solvothermal method was proposed for synthesizing colloidal spheres of a new composition, palladium iodide (PdI2). Typical procedure was designed to involve the introduction of cupric chloride (CuCl2) as weak oxidant. CuCl2 was found to be essential for preventing the easy formation of palladium deposits as well as facilitating the synthesis and assembly. Under the co-effect of CuCl2 and the surfactant of polyvinylpyrrolidone (PVP), neutral PdI2 colloidal spheres with narrow size distribution were successfully produced. Such ion-assisted synthetic method is believed to be prospective in producing well-constructed nanostructures.


colloidal sphere palladium iodide copper-mediated synthesis solvothermal method self-assembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1 (a).
    Xia YN, Gates B, Yin YD, Lu Y. Monodispersed colloidal spheres: Old materials with new applications. Adv Mater, 2000, 12: 693–713CrossRefGoogle Scholar
  2. 1 (b).
    Jeong U, Wang YL, Ibisate M, Xia YN. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Adv Funct Mater, 2005, 15: 1907–1921CrossRefGoogle Scholar
  3. 2 (a).
    Vos WL, Sprik R, van Blaaderen A, Imhof A, Lagendijk A, Wegdam GH. Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys Rev B, 1996, 53: 231–235Google Scholar
  4. 2 (b).
    Tarhan II, Watson GH. Photonic band structure of fcc colloidal crystals. Phys Rev Lett, 1996, 76: 315–318CrossRefGoogle Scholar
  5. 2 (c).
    Tarhan II, Zinkin MP, Watson GH. Interferometric technique for the measurement of photonic band structure in colloidal crystals. Opt Lett, 1995, 20: 1571–1573CrossRefGoogle Scholar
  6. 2 (d).
    Ge JP, Yin YD. Magnetically tunable colloidal photonic structures in alkanol solutions. Adv Mater, 2008, 20: 3485–3491CrossRefGoogle Scholar
  7. 3 (a).
    Park SH, Xia YN. Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates. Chem Mater, 1998, 10: 1745–1747CrossRefGoogle Scholar
  8. 3 (b).
    Park SH, Xia YN. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv Mater, 1998, 10: 1045–1048CrossRefGoogle Scholar
  9. 3 (c).
    Gates B, Yin YD, Xia YN. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem Mater, 1999, 11: 2827–2836CrossRefGoogle Scholar
  10. 3 (d).
    Johnson SA, Ollivier PJ, Mallouk TE. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283: 963–965CrossRefGoogle Scholar
  11. 3 (e).
    Yoshino K, Lee SB, Tatsuhara S, Kawagishi Y, Ozaki M, Zakhidov AA. Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal. Appl Phys Lett, 1998, 73: 3506–3508CrossRefGoogle Scholar
  12. 3 (f).
    Bertone JF, Jiang P, Hwang KS, Mittleman DM, Colvin VL. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys Rev Lett, 1999, 83: 300–303CrossRefGoogle Scholar
  13. 3 (g).
    Jiang P, Cizeron J, Bertone JF, Colvin VL. Preparation of macroporous metal films from colloidal crystals. J Am Chem Soc, 1999, 121: 7957–7958CrossRefGoogle Scholar
  14. 3 (h).
    Xue MJ, Xiao WT, Zhang ZJ. Porous films from transformation of polymeric sphere arrays. Adv Mater, 2008, 20: 439–442CrossRefGoogle Scholar
  15. 3 (i).
    Tsung CK, Fan J, Zheng NF, Shi QH, Forman AJ, Wang JF, Stucky GD. A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem Int Ed, 2008, 47: 8682–8686CrossRefGoogle Scholar
  16. 4 (a).
    Kim SH, Jeon SJ, Yang SM. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane. J Am Chem Soc, 2008, 130: 6040–6046CrossRefGoogle Scholar
  17. 4 (b).
    Liu LP, Peng Q, Li YD. Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor. Nano Res, 2008, 1: 403–411CrossRefGoogle Scholar
  18. 4 (c).
    Li F, Yoo WC, Beernink MB, Stein A. Site-specific functionalization of anisotropic nanoparticles: From colloidal atoms to colloidal molecules. J Am Chem Soc, 2009, 131: 18548–18555CrossRefGoogle Scholar
  19. 4 (d).
    Lee SH, Teshima K, Fujisawa M, Fujii S, Endo M, Oishi S. Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates. Phys Chem Chem Phys, 2009, 11: 3628–3633CrossRefGoogle Scholar
  20. 4 (e).
    Mahajan S, Cole RM, Soares BF, Pelfrey SH, Russell AE, Baumberg JJ, Bartlett PN. Relating SERS intensity to specific plasmon modes on sphere segment void surfaces. J Phys Chem C, 2009, 113: 9284–9289CrossRefGoogle Scholar
  21. 5 (a).
    Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci, 1968, 26: 62–69CrossRefGoogle Scholar
  22. 5 (b).
    Kuhn JN, Huang WY, Tsung CK, Zhang YW, Somorjai GA. Structure sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc, 2008, 130: 14026–14027CrossRefGoogle Scholar
  23. 5 (c).
    Li L, Tsung CK, Ming T, Sun ZH, Ni WH, Shi QH, Stucky GD, Wang JF. Multifunctional mesostructured silica microspheres from an ultrasonic aerosol spray. Adv Funct Mater, 2008, 18: 2956–2962CrossRefGoogle Scholar
  24. 5 (d).
    Arshady R. Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid Polym Sci, 1992, 270: 717–732CrossRefGoogle Scholar
  25. 6 (a).
    Ed: Piirma I. Emulsion Polymerization. New York: Academic, 1982Google Scholar
  26. 6 (b).
    Eds: Poehlein GW, Ottewill RH, Goodwin JW. Science and Technology of Polymer Colloids, Vol. II, Boston: Martinus Nijhoff, 1983Google Scholar
  27. 7.
    Wang YL, Xia YN. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett, 2004, 4: 2047–2050CrossRefGoogle Scholar
  28. 8 (a).
    Wang YL, Cai L, Xia YN. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater, 2005, 17: 473–477CrossRefGoogle Scholar
  29. 8 (b).
    Jeong U, Xia YN. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew Chem Int Ed, 2005, 44: 3099–3103CrossRefGoogle Scholar
  30. 8 (c).
    Jeong U, Kim JU, Xia YN. Monodispersed spherical colloids of Se@CdSe: Synthesis and use as building blocks in fabricating photonic crystals. Nano Lett, 2005, 5: 937–942CrossRefGoogle Scholar
  31. 8 (d).
    Wang JW, Wang X, Peng Q, Li YD. Synthesis and characterization of bismuth singlecrystalline nanowires and nanospheres. Inorg Chem, 2004, 43: 7552–7556CrossRefGoogle Scholar
  32. 9.
    Deng H, Li XL, Peng Q, Wang X, Chen J, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed, 2005, 44: 2782–2785CrossRefGoogle Scholar
  33. 10.
    Chen C, Chen W, Lu J, Chu DR, Huo ZY, Peng Q, Li YD. Transition-metal phosphate colloidal spheres. Angew Chem Int Ed, 2009, 48: 4816–4819CrossRefGoogle Scholar
  34. 11 (a).
    Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals, Angew Chem Int Ed, 2007, 46: 6650–6653CrossRefGoogle Scholar
  35. 11 (b).
    Wang DS, Xie T, Peng Q, Li YD. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J Am Chem Soc, 2008, 130: 4016–4022CrossRefGoogle Scholar
  36. 11 (c).
    Wang DS, Xie T, Peng Q, Zhang SY, Chen J, Li YD. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals, Chem Eur J, 2008, 14: 2507–2513CrossRefGoogle Scholar
  37. 11 (d).
    Wang DS, Xie T, Li YD. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2: 30–46CrossRefGoogle Scholar
  38. 12.
    Beamish FE, Dale J. Determination of palladium by means of potassium iodide. Ind Eng Chem Anal Ed, 1938, 10: 697–698CrossRefGoogle Scholar
  39. 13.
    Mousset C, Provot O, Hamze A, Bignon J, Brion JD, Alami M. DMSO-PdI2 as a powerful oxidizing couple of alkynes into benzils: One-pot synthesis of nitrogen-containing five- or six-membered heterocycles. Tetrahedron, 2008, 64: 4287–4294CrossRefGoogle Scholar
  40. 14.
    Deng YQ, Li J, Ma SM. PdI2-catalyzed coupling-cyclization reactions involving two different 2,3-Allenols: An efficient synthesis of 4-(1′,3′-dien-2′-yl)-2,5-dihydrofuran derivatives. Chem Eur J, 2008, 14: 4263–4266CrossRefGoogle Scholar
  41. 15.
    Gabriele B, Salerno G, Costa M, Chiusoli GP. Recent developments in the synthesis of heterocyclic derivatives by PdI2-catalyzed oxidative carbonylation reactions. J Organometal Chem, 2003, 687: 219–228CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations