Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels

Abstract

Low-molecular-weight organogels (LMOG) have been attracting a surge interest in fabricating soft materials. Although the finding of the gelator molecules has been developed from serendipity to objective design, the achievement of the gelator molecules still needs good design and tedious organic synthesis. In this paper, we proposed a simple and general mixing approach to get the organogel for nearly all the organic compounds and even soluble nanoparticles without any modification. We have designed a universal gelator molecule, which forms organogels with more than 40 kinds of organic solvents from aploar to polar solvents. More interestingly, when other organic compounds or even nanomaterials, which are soluble in certain organic solvents, are mixed with this gelator molecule, they can form organogels no matter whether the individual compounds could form organogel or not. This method is applicable to nearly all kinds of soluble organic compounds and opens an efficient and universal way to fabricate gel materials.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Terech P, Weiss RG. Eds. Molecular Gels: Materials with Self-Assembled Fibrllar Networks. Dordrecht: Springer, 2006

    Google Scholar 

  2. 2

    Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, 1997, 97: 3133–3159

    Article  CAS  Google Scholar 

  3. 3

    Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev, 2004, 104: 1201–1217

    Article  CAS  Google Scholar 

  4. 4

    Mohan SRK, Hamachi I. Synthesis of new supramolecular polymers based on glycosylated amino acid and their applications. Curr Org Chem, 2005, 9: 491–502

    CAS  Google Scholar 

  5. 5

    Abdallah DJ, Weiss RG. Organogels and low molecular mass organic gelators. Adv Mater, 2000, 12: 1237–1247

    Article  CAS  Google Scholar 

  6. 6

    Ajayaghosh A, Praveen VK. pi-organogels of self-assembled p-phenylenevinylenes: Soft materials with distinct size, shape, and functions. Acc Chem Res, 2007, 40: 644–656

    Article  CAS  Google Scholar 

  7. 7

    Shimizu T, Masuda M, Minamikawa H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev, 2005, 105: 1401–1443

    Article  CAS  Google Scholar 

  8. 8

    Hirst AR, Smith DK, Feiters MC, Geurts HPM, Wright AC. Two-component dendritic gels: Easily tunable materials. J Am Chem Soc, 2003, 125: 9010–9011

    Article  CAS  Google Scholar 

  9. 9

    van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed, 2003, 42: 980–999

    Article  Google Scholar 

  10. 10

    Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev, 2001, 101: 1869–1879

    Article  CAS  Google Scholar 

  11. 11

    Roy G, Miravet JF, Escuder B, Sanchez C, Llusar M. Morphology templating of nanofibrous silica through pH-sensitive gels: “in situ” and “post-diffusion” strategies. J Mater Chem, 2006, 16: 1817–1824

    Article  CAS  Google Scholar 

  12. 12

    Gao P, Zhan CL, Liu MH. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir, 2006, 22: 775–779

    Article  CAS  Google Scholar 

  13. 13

    Holmes TC, de Lacalle S, Su X, Liu GS, Rich A, Zhang SG. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA, 2000, 97: 6728–6733

    Article  CAS  Google Scholar 

  14. 14

    Jung JH, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir, 2001, 17: 7229–7232

    Article  CAS  Google Scholar 

  15. 15

    Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc, 2008, 130: 9113–9121

    Article  CAS  Google Scholar 

  16. 16

    Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S. An organogel system can control the stereochemical course of anthracene photodimerization. Chem Commun, 2009: 2100–2102

  17. 17

    Page MG, Warr GG. Influence of the structure and composition of mono- and dialkyl phosphate mixtures on aluminum complex organogels. Langmuir, 2009, 25: 8810–8816

    Article  CAS  Google Scholar 

  18. 18

    Li YG, Wang TY, Liu MH. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter, 2007, 3: 1312–1317

    Article  CAS  Google Scholar 

  19. 19

    Lal M, Pakatchi S, He GS, Kim KS, Prasad PN. Dye-doped organogels: A new medium for two-photon pumped lasing and other optical applications. Chem Mater, 1999, 11: 3012–3014

    Article  CAS  Google Scholar 

  20. 20

    Shumburo A, Biewer MC. Stabilization of an organic photochromic material by incorporation in an organogel. Chem Mater, 2002, 14: 3745–3750

    Article  CAS  Google Scholar 

  21. 21

    Gaponik N, Wolf A, Marx R, Lesnyak V, Schilling K, Eychmuller A. Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: Gels and aerogels as building blocks for nanotechnology. Adv Mater, 2008, 20: 4257–4262

    Article  CAS  Google Scholar 

  22. 22

    Duan PF, Li YG, Liu MH. Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality. Sci China Chem, 2010, 53: 432–437

    Article  CAS  Google Scholar 

  23. 23

    Abdallah DJ, Weiss RG. n-alkanes gel n-alkanes (and many other organic liquids). Langmuir, 2000, 16: 352–355

    Article  CAS  Google Scholar 

  24. 24

    George M, Snyder SL, Terech P, Glinka CJ, Weiss RG. N-alkyl perfluoroalkanamides as low molecular-mass organogelators. J Am Chem Soc, 2003, 125: 10275–10283

    Article  CAS  Google Scholar 

  25. 25

    Abdallah DJ, Lu LD, Weiss RG. Thermoreversible organogels from alkane gelators with one heteroatom. Chem Mater, 1999, 11: 2907–2911

    Article  CAS  Google Scholar 

  26. 26

    de Loos M, Feringa BL, van Esch JH. Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem, 2005: 3615–3631

  27. 27

    Makarevic J, Jokic M, Peric B, Tomisic V, Kojic-Prodic B, Zinic M. Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents: Supramolecular gels with temperature dependent assembly/dissolution equilibrium. Chem. Eur. J., 2001, 7:3328–3341

    Article  CAS  Google Scholar 

  28. 28

    Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chem. Eur. J., 2001, 7:4328–4334

    Article  CAS  Google Scholar 

  29. 29

    Kida T, Marui Y, Miyawaki K, Kato E, Akashi M. Unique organogel formation with a channel-type cyclodextrin assembly. Chem Commun, 2009: 3889–3891

  30. 30

    Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A. Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc, 2005, 127: 11134–11139

    Article  CAS  Google Scholar 

  31. 31

    Terech P, Ostuni E, Weiss RG. Structural study of cholesteryl anthraquinone-2-carboxylate (CAQ) physical organogels by neutron and X-ray small angle scattering. J Phys Chem, 1996, 100: 3759–3766

    Article  CAS  Google Scholar 

  32. 32

    Ayabe M, Kishida T, Fujita N, Sada K, Shinkai S. Binary organogelators which show light and temperature responsiveness. Org Biomol Chem, 2003, 1: 2744–2747

    Article  CAS  Google Scholar 

  33. 33

    Wang C, Zhang DQ, Xiang JF, Zhu DB. New organogels based on an anthracene derivative with one urea group and its photodimer: Fluorescence enhancement after gelation. Langmuir, 2007, 23: 9195–9200

    Article  CAS  Google Scholar 

  34. 34

    Kamikawa Y, Kato T. Color-tunable fluorescent organogels: Columnar self-assembly of pyrene-containing oligo(glutamic acid)s. Langmuir, 2007, 23: 274–278

    Article  CAS  Google Scholar 

  35. 35

    Burguete MI, Galindo F, Gavara R, Izquierdo MA, Lima JC, Luis SV, Parola AJ, Pina F. Use of fluorescence spectroscopy to study polymeric materials with porous structure based on imprinting by self-assembled fibrillar networks. Langmuir, 2008, 24: 9795–9803

    Article  CAS  Google Scholar 

  36. 36

    Yang XC, Lu R, Xu TH, Xue PC, Liu XL, Zhao YY. Novel carbazole-based organogels modulated by tert-butyl moieties. Chem Commun, 2008: 453–455

  37. 37

    Tamaru S, Uchino S, Takeuchi M, Ikeda M, Hatano T, Shinkai S. A porphyrin-based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives. Tetrahedron Lett, 2002, 43: 3751–3755

    Article  CAS  Google Scholar 

  38. 38

    Tamaru S, Takeuchi M, Sano M, Shinkai S. Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica: Unimolecular stacks versus helical bundles as templates. Angew Chem Int Ed, 2002, 41: 853–856

    Article  CAS  Google Scholar 

  39. 39

    Diaz DD, Cid JJ, Vazquez P, Torres T. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry. Chem Eur J, 2008, 14: 9261–9273

    Article  CAS  Google Scholar 

  40. 40

    Ikeda M, Takeuchi M, Shinkai S. Unusual emission properties of a triphenylene-based organogel system. Chem Commun, 2003: 1354–1355

  41. 41

    Ziessel R, Pickaert G, Camerel F, Donnio B, Guillon D, Cesario M, Prange T. Tuning organogels and mesophases with phenanthroline Ligands and their copper complexes by inter-to intramolecular hydrogen bonds. J Am Chem Soc, 2004, 126: 12403–12413

    Article  CAS  Google Scholar 

  42. 42

    Kishimura A, Yamashita T, Aida T. Phosphorescent organogels via “metallophilic” interactions for reversible RGB-color switching. J Am Chem Soc, 2005, 127: 179–183

    Article  CAS  Google Scholar 

  43. 43

    Mieden-Gundert G, Klein L, Fischer M, Vogtle F, Heuze K, Pozzo JL, Vallier M, Fages F. Rational design of low molecular mass organogelators: Toward a library of functional N-acyl-1,omegaamino acid derivatives. Angew Chem Int Ed, 2001, 40: 3164–3166

    Article  CAS  Google Scholar 

  44. 44

    Terech P, Gebel G, Ramasseul R. Molecular rods in a zinc(II) porphyrin/cyclohexane physical gel: Neutron and X-ray scattering characterizations. Langmuir, 1996, 12: 4321–4323

    Article  CAS  Google Scholar 

  45. 45

    Kimura M, Muto T, Takimoto H, Wada K, Ohta K, Hanabusa K, Shirai H, Kobayashi N. Fibrous assemblies made of amphiphilic metallophthalocyanines. Langmuir, 2000, 16: 2078–2082

    Article  CAS  Google Scholar 

  46. 46

    Hui JKH, Yu Z, MacLachlan MJ. Supramolecular assembly of zinc salphen complexes: Access to metal-containing gels and nanofibers. Angew Chem Int Ed, 2007, 46:7980–7983

    Article  CAS  Google Scholar 

  47. 47

    Funkhouser GP, Tonmukayakul N, Liang F. Rheological comparison of organogelators based on iron and aluminum complexes of dodecylmethylphosphinic acid and methyl dodecanephosphonic acid. Langmuir, 2009, 25: 8672–8677

    Article  CAS  Google Scholar 

  48. 48

    Tam AYY, Wong KMC, Yam VWW. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2′-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. J Am Chem Soc, 2009, 131: 6253–6262

    Article  CAS  Google Scholar 

  49. 49

    Ishi-i T, Shinkai S. Dye-based organogels: Stimuli-responsive soft materials based on one-dimensional self-assembling aromatic dyes. Supermol Dye Chem, 2005, 258: 119–160

    Article  CAS  Google Scholar 

  50. 50

    Li XQ, Zhang X, Ghosh S, Wurthner F. Highly fluorescent lyotropic mesophases and organogels based on J-aggregates of core-twisted perylene bisimide dyes. Chem Eur J, 2008, 14: 8074–8078

    Article  CAS  Google Scholar 

  51. 51

    Tian HJ, Inoue K, Yoza K, Ishi-i T, Shinkai S. New organic gelalors bearing a porphyrin group: A new strategy to create ordered porphyrin assemblies. Chem Lett, 1998: 871-872

  52. 52

    Sperling LH. Introduction to Physical Polymer Science. New York: John Wiley & Sons, 2006

    Google Scholar 

  53. 53

    Davis BK. Diffusion in polymer gel implants. Proc Natl Acad Sci USA, 1974, 71: 3120–3123

    Article  CAS  Google Scholar 

  54. 54

    Kwon IC, Bae YH, Kim SW. Electrically erodible polymer gel for controlled release of drugs. Nature, 1991, 354: 291–293

    Article  CAS  Google Scholar 

  55. 55

    Wang P, Zakeeruddin SM, Exnar I, Gratzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun, 2002: 2972-2973

  56. 56

    Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Acc Chem Res, 2008, 41: 315–326

    Article  CAS  Google Scholar 

  57. 57

    Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM. Elastic membranes of close-packed nanoparticle arrays. Nat Mater, 2007, 6: 656–660

    Article  CAS  Google Scholar 

  58. 58

    Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451: 549–552

    Article  CAS  Google Scholar 

  59. 59

    Petty JT, Zheng J, Hud NV, Dickson RM. DNA-templated Ag nanocluster formation. J Am Chem Soc, 2004, 126: 5207–5212

    Article  CAS  Google Scholar 

  60. 60

    Li YG, Liu MH. Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. Chem Commun, 2008: 5571-5573

  61. 61

    Noone KM, Ginger DS. Doping for speed: Colloidal nanoparticles for thin-film optoelectronics. Acs Nano, 2009, 3: 261–265

    Article  CAS  Google Scholar 

  62. 62

    Cassagneau T, Mallouk TE, Fendler JH. Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles. J Am Chem Soc, 1998, 120: 7848–7859

    Article  CAS  Google Scholar 

  63. 63

    Jung JH, Ono Y, Sakurai K, Sano M, Shinkai S. Novel vesicular aggregates of crown-appended cholesterol derivatives which act as gelators of organic solvents and as templates for silica transcription. J Am Chem Soc, 2000, 122: 8648–8653

    Article  CAS  Google Scholar 

  64. 64

    Pal A, Srivastava A, Bhattacharya S. Role of capping ligands on the nanoparticles in the modulation of properties of a hybrid matrix of nanoparticles in a 2D film and in a supramolecular organogel. Chem Eur J, 2009, 15: 9169–9182

    Article  CAS  Google Scholar 

  65. 65

    Sangeetha NM, Bhat S, Raffy G, Belin C, Loppinet-Serani A, Aymonier C, Terech P, Maitra U, Desvergne JP, Del Guerzo A. Hybrid materials combining photoactive 2,3-didecyloxy anthracene physical gels and gold nanoparticles. Chem Mater, 2009, 21: 3424–3432

    Article  CAS  Google Scholar 

  66. 66

    Kimura M, Kobayashi S, Kuroda T, Hanabusa K, Shirai H. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv Mater, 2004, 16: 335–338

    Article  CAS  Google Scholar 

  67. 67

    Suzuki M, Nakajima Y, Sato T, Shirai H, Hanabusa K. Fabrication of TiO2 using L-lysine-based organogelators as organic templates: control of the nanostructures. Chem Commun, 2006: 377-379

  68. 68

    Li LS, Stupp SI. One-dimensional assembly of lipophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities. Angew Chem Int Ed, 2005, 44: 1833–1836

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to MingHua Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, P., Li, Y., Jiang, J. et al. Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels. Sci. China Chem. 54, 1051–1063 (2011). https://doi.org/10.1007/s11426-011-4295-x

Download citation

Keywords

  • organogel
  • hybrid system
  • supramolecular chemistry
  • self-assembly
  • soft matter