Skip to main content
Log in

Hydrothermal synthesis and characterization of rare-earth ruthenate pyrochlore compounds R2Ru2O7 (R = Pr3+, Sm3+-Ho3+)

  • Articles
  • Special Topic · Inorganic Solid State Chemistry and Energy Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of pyrochlore oxides, R2Ru2O7 (R = Pr3+, Sm3+-Ho3+) were synthesized under mild hydrothermal conditions. All the samples crystallize in uniform octahedron characteristically. The products were characterized by powder X-ray diffraction, scanning electron microscopy, energy-disperse X-ray spectroscopy, and dc susceptibility, and the factors that affected the crystallization were discussed. It was found that the purity of products depends strongly on the raw materials and the amount of alkalinity in the initial reaction mixtures. The ZFC and FC susceptibilities of all of the compounds R2Ru2O7 at low temperature were also measured and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modeshia DR, Walton RI. Solvothermal synthesis of perovskites and pyrochlores: Crystallisation of functional oxides under mild conditions. Chem Soc Rev, 2010, 39: 4303–4325

    Article  CAS  Google Scholar 

  2. Bae JM, Steele BCH. Properties of pyrochlore ruthenate cathodes for intermediate temperature solid oxide fuel cells. J Electroceram, 1999, 3: 37–46

    Article  CAS  Google Scholar 

  3. Abate C, Esposito V, Duncan K, Nino JC, Gattia DM, Wachsman ED, Traversa E. Novel Y2−x PrxRu2O7 (x = 0–2) pyrochlore oxides prepared using a soft chemistry route and their electrical properties. J Am Chem Soc, 2010, 93: 1970–1977

    CAS  Google Scholar 

  4. Saito Y, Yokota K, Yoshihara K, Saito M, Kuwano J, Shiroishi H. Oxygen reduction electrode properties of pyrochlores Ln2Ru2O7−δ (Ln = Pr, Nd, Sm) in aqueous solutions. Key Engineering Materials, 2007, 350: 167–170

    Article  CAS  Google Scholar 

  5. Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murrell AJ, Vernon PDF. Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature, 1990, 344: 319–321

    Article  CAS  Google Scholar 

  6. Gardner JS, Cornelius AL, Chang LJ, Prager M, Brückel Th, Ehlers G. Spin dynamics in Ho2Ru2O7. J Phys: Condens Matter, 2005, 17: 7089–7095

    Article  CAS  Google Scholar 

  7. Wiebe CR, Gardner JS, Kim SJ, Luke GM, Wills AS, Gaulin BD, Greedan JE, Swainson I, Qiu Y, Jones CY. Magnetic ordering in the spin-Ice candidate Ho2Ru2O7. Phys Rev Lett, 2004, 93: 076403

    Article  CAS  Google Scholar 

  8. Taira N, Wakeshima M, Hinatsu Y, Tobo A, Ohoyama K. Magnetic structure of pyrochlore-type Er2Ru2O7. J Solid State Chem, 2003, 176: 165–169

    Article  CAS  Google Scholar 

  9. Bansal C, Kawanaka H, Bando H, Nishihara Y. Magnetic properties of Ho2Ru2O7 and Dy2Ru2O7 pyrochlores. Physica B, 2003, 329–333: 1034–1035

    Article  Google Scholar 

  10. Taira N, Wakeshima M, Hinatsu Y. Magnetic susceptibility and specific heat studies on heavy rare earth ruthenate pyrochlores R2Ru2O7 (R = Gd-Yb). J Mater Chem, 2002, 12: 1475–1479

    Article  CAS  Google Scholar 

  11. Bansal C, Kawanaka H, Bando H, Nishihara Y. Structure and magnetic properties of the pyrochlore Ho2Ru2Op7: A possible dipolar spin ice system. Phys Rev B, 2002, 66: 052406

    Article  Google Scholar 

  12. Ito M, Yasui Y, Kanada M, Harashina H, Yoshii S, Murata K, Sato M, Okumura H, Kakurai K. Nature of spin freezing transition of geometrically frustrated pyrochlore system R2Ru2O7 (R = rare earth elements and Y). J Phys Chem Solids, 2001, 62: 337–341

    Article  CAS  Google Scholar 

  13. Taira N, Wakeshima M, Hinatsu Y. Specific heat and ac susceptibility studies on ruthenium pyrochlores R2Ru2O7 (R = rare earths). J Solid State Chem, 2000, 152: 441–446

    Article  CAS  Google Scholar 

  14. Ito M, Yasui Y, Kanada M, Harashina H, Yoshii S, Murata K, Sato M, Okumura H, Kakurai K. Neutron diffraction study of pyrochlore compound R2Ru2O7 (R = Y, Nd) above and below the Spin Freezing Temperature. J Phys Soc Jpn, 2000, 69: 888–894

    Article  CAS  Google Scholar 

  15. Taira N, Wakeshima M, Hinatsu Y. Magnetic properties of ruthenium pyrochlores R2Ru2O7 (R = rare earth). J Phys: Condens Matter, 1999, 11: 6983–6990

    Article  CAS  Google Scholar 

  16. Chang LJ, Prager M, Perßon J, Walter J, Jansen E, Chen YY, Gardner JS. Magnetic order in the double pyrochlore Tb2Ru2O7. J Phys: Condens Matter, 2010, 22: 076003

    Article  CAS  Google Scholar 

  17. Kennedy BJ, Vogt T. Structural and bonding trends in ruthenium pyrochlores. J Solid State Chem, 1996, 126: 261–270

    Article  CAS  Google Scholar 

  18. Aleonard R, Bertaut EF, Montmory MC, Pauthenet R. Rare-earth ruthenates. J Appl Phys, 1962, 33: 1205–1205

    Article  CAS  Google Scholar 

  19. Senzaki Y, Hampden-Smith MJ, Kodas TT, Hussler JW. Preparation of metal ruthenates by spray pyrolysis. J Am Ceram Soc, 1995, 78: 2977–2983

    Article  CAS  Google Scholar 

  20. Horowitz H S, Longo J M, Lewandowski J T. New oxide pyrochlores: A2[B2−x Ax]O7−y (A = Pb, Bi; B = Ru, Ir). Mater Res Bull, 1981, 16: 489–496

    Article  CAS  Google Scholar 

  21. Darton RJ, Turner SS, Sloan J, Lees MR, Walton RI. Hydrothermal synthesis of a B-Site magnetic ruthenate pyrochlore. Cryst Growth Des, 2010, 10: 3819–3823

    Article  CAS  Google Scholar 

  22. Wright CS, Fisher J, Thompsett D, Walton RI. Hydrothermal Synthesis of a cerium(IV) pyrochlore with low-temperature redox properties. Angew Chem In Ed, 2006, 45: 2442–2446

    Article  CAS  Google Scholar 

  23. Mao Y, Li G, Xu W, Feng S. Hydrothermal synthesis and characterization of nanocrystalline pyrochlore oxides M2Sn2O7 (M = La, Bi, Gd or Y). J Mater Chem, 2000, 10: 479–482

    Article  CAS  Google Scholar 

  24. Mao YC, Li GS, Sun YY, Feng SH. Hydrothermal synthesis and characterization of Bi2Pb2O7 with pyrochlore structure. J Solid State Chem, 2000, 149: 314–319

    Article  CAS  Google Scholar 

  25. Peng W, Hu B, Chen Y, Hu W, Yuan H, Feng S. Hydrothermal synthesis and characterization of pyrochlore oxide R2Ti2O7(R = Gd3+, Tb3+, Dy3+). Chem Res Chinese Universities, 2011, 27(2): 161–165

    CAS  Google Scholar 

  26. Yamamoto T, Kanno R, Takeda Y, Yamamoto O, Kawamoto Y, Takano M. Crystal structure and metal-semiconductor transition of the Bi2−x LnxRu2O7 pyrochlores (Ln = Pr-Lu). J Solid State Chem, 1994, 109: 372–383

    Article  CAS  Google Scholar 

  27. Sardar K, Lees MR, Kashtiban RJ, Sloan J, Walton RI. Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites. Chem Mater, 2011, 23: 48–56

    Article  CAS  Google Scholar 

  28. Modeshia D R, Darton R J, Ashbrook S E, Walton R I. Control of polymorphism in NaNbO3 by hydrothermal synthesis. Chem Commun, 2009: 68–70

  29. Stampler ES, Sheets WC, Prellier W, Marks TJ, Poeppelmeier KR. Hydrothermal synthesis of LnMnO3 (Ln = Ho-Lu and Y): Exploiting amphoterism in late rare-earth oxides. J Mater Chem, 2009, 19: 4375–4381

    Article  CAS  Google Scholar 

  30. Hu WW, Chen Y, Yuan HM, Zhang GH, Li GH, Pang GS, Feng SH. Hydrothermal synthesis, characterization and composition-dependent magnetic properties of LaFe1−x CrxO3 system (0 ⩽x⩽ 1). J Solid State Chem, 2010, 183: 1582–1587

    Article  CAS  Google Scholar 

  31. Cashion JD, Cooke AH, Leask MJM, Thorp TL, Wells MR. Crystal growth and magnetic susceptibility of some rare-earth compounds. J Mater Sci, 1968, 3: 402–407

    Article  CAS  Google Scholar 

  32. Bramwell ST, Field MN, Harris MJ, Parkin IP. Bulk magnetization of the heavy rare earth titanate pyrochlores — a series of model frustrated magnets. J Phys: Condens Matter, 2000, 12: 483–495

    Article  CAS  Google Scholar 

  33. Gingras MJP, den Hertog BC, Faucher M, Gardner JS, Dunsiger SR, Chang LJ, Gaulin BD, Raju NP, Greedan JE. Thermodynamic and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7. Phys Rev B, 2000, 62: 6496–6511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongMing Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Wang, D., Peng, W. et al. Hydrothermal synthesis and characterization of rare-earth ruthenate pyrochlore compounds R2Ru2O7 (R = Pr3+, Sm3+-Ho3+). Sci. China Chem. 54, 941–946 (2011). https://doi.org/10.1007/s11426-011-4287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4287-x

Keywords

Navigation