Skip to main content
Log in

Influences of a periodic signal on a noisy synthetic gene network

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The effects of noise and a periodic signal on a synthetic gene network have been investigated. By tuning the distance of a parameter from the Hopf bifurcation point, both implicit internal signal stochastic resonance and explicit internal signal stochastic resonance can be induced by noise. Furthermore, a switch process can also be elicited. When a periodic signal is coupled to the gene network, two interesting phenomena occur with the modulation of the frequency of the signal: the effect of noise amplifying cellular signal can be inhibited or even destroyed, and “locked” coherence resonance occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys. A, 1981, 14: L453–L457

    Article  Google Scholar 

  2. Jung P, Hanggi P. Amplification of small signal via stochastic resonance. Phys Rev A, 1991, 44: 8032–8042

    Article  Google Scholar 

  3. Jia Y, Yu S, Li J. Stochastic resonance in nonlinear systems subject to multiplicative and additive noise. Phys Rev E, 2000, 62: 1869–1878

    Article  CAS  Google Scholar 

  4. Ghosh P, Chattopadhyay S, Chaudhuri JR. Stochastic resonance in a generalized quantum Kubo oscillator. J Phys Chem B, 2010, 114: 1368–1379

    Article  CAS  Google Scholar 

  5. Guerra DN, Dunn T, Mohanty P. Signal amplification by 1/f noise in silicon-based nanomechanical resonators. Nano Lett, 2009, 9: 3096–3099

    Article  CAS  Google Scholar 

  6. Xiao TJ, Hou ZH, Xin HW. Stochastic thermodynamics in a mesoscopic chemical oscillation system. J Phys Chem B, 2009, 113: 9316–9320

    Article  CAS  Google Scholar 

  7. Wang H. Statistics of defect-mediated turbulence influenced by noise. Phys Rev Lett, 2004, 93: 154101

    Article  Google Scholar 

  8. Jiang Y, Dong S, Cassou ML. Broadband rotational resonance in solid state NMR spectroscopy. J Chem Phys, 2004, 120: 8389–8352

    Article  CAS  Google Scholar 

  9. Gong Y, Xu B, Ma X, Dong Y, Yang C. Enhancement of stochastic resonance induced by either internal or external noise in NO reduction on platinum surfaces. J Phys Chem C, 2007, 111: 4264–4268

    Article  CAS  Google Scholar 

  10. McAdams HH, Arkin A. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet, 1999, 15: 65–69

    Article  CAS  Google Scholar 

  11. Wiesenfield D, Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995, 373: 33–36

    Article  Google Scholar 

  12. Collins JJ, Chow CC, Imhoff TT. Sochastic resonance without tuning. Nature, 1995, 376: 236–238

    Article  CAS  Google Scholar 

  13. Hasty J, Dolnik M, Rottschäfer V, Collins JJ. Synthetic gene network for entraining and amplifying cellular oscillations. Phys Rev Lett, 2002, 88: 148101

    Article  Google Scholar 

  14. Chen L, Wang R, Zhou T, Aihara K. Noise-induced cooperative behavior in a multicell system. Bioinformatics, 2005, 21: 2722–2729

    Article  CAS  Google Scholar 

  15. Lang XF, Li QS. Roles of external noise correlation in optimal intracellular calcium signaling. J Chem Phys, 2008, 128: 205102

    Article  Google Scholar 

  16. Lai YC, Liu YR. Noise promotes species diversity in nature. Phys Rev Lett, 2005, 94: 038102

    Article  Google Scholar 

  17. Zhou C, Kurths J. Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys Rev Lett, 2002, 88: 230602

    Article  Google Scholar 

  18. Olemskoi AI, Kharchenko DO, Knyaz’ IA. Phase transitions induced by noise cross-correlations. Phys Rev E, 2005, 71: 041101

    Article  CAS  Google Scholar 

  19. Tong NH, Vojta M. Signatures of a noise-induced quantum phase transition in a mesoscopic metal ring. Phys Rev Lett, 2006, 97: 016802

    Article  Google Scholar 

  20. Hoffmann P, Wehner S, Schmeisser D, Brand HR, Küppers J. Noise-induced spatiotemporal patterns in a bistable reaction-diffusion system: Photoelectron emission microscopy experiments and modeling of the CO oxidation reaction on Ir(111). Phys Rev E, 2006, 73: 056123

    Article  Google Scholar 

  21. Hou ZH, Yang LF, Zuo XB, Xin HW. Noise induced pattern transition and spatiotemporal stochastic resonance. Phys Rev Lett, 1998, 81: 2854–2857

    Article  CAS  Google Scholar 

  22. Lindner JF, Chandramouli S, Bulsara AR, Löcher M. Noise enhanced propagation. Phys Rev Lett, 1998, 81: 5048–5051

    Article  CAS  Google Scholar 

  23. Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys Rev Lett, 1997, 78: 775–778

    Article  CAS  Google Scholar 

  24. Li QS, Zhu R. Stochastic resonance with explicit internal signal. J Chem Phys, 2001, 115: 6590–6595

    Article  CAS  Google Scholar 

  25. Hanggi P. Stochastic resonance in biology: How noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem, 2002, 3: 285–290

    Article  CAS  Google Scholar 

  26. Zakharova A, Vadivasova T, Anishchenko V, Koseska A, Kurths J. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys Rev E, 2010, 81: 011106

    Article  CAS  Google Scholar 

  27. Fuliński A. Barrier fluctuations and stochastic resonance in membrane transport. Chaos, 1998, 8: 549–556

    Article  Google Scholar 

  28. McMillen D, Kopell N, Hasty J, Collins JJ. Synchronizing genetic relaxation oscillators by intercell signaling. Proc Natl Acad Sci USA, 2002, 99: 679–684

    Article  CAS  Google Scholar 

  29. Koseska A, Volkov E, Zaikin A, Kurths J. Inherent multistability in arrays of autoinducer coupled genetic oscillators. Phys Rev E, 2007, 75: 031916

    Article  CAS  Google Scholar 

  30. Bulter T, Lee SG, Wong WW, Fung E, Connor MR, Liao JC. Design of artificial cell-cell communication using gene and metabolic networks. Proc Natl Acad Sci USA, 2004, 101: 2299–2304

    Article  CAS  Google Scholar 

  31. Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC. A synthetic gene-metabolic oscillator. Nature, 2005, 435: 118–122

    Article  CAS  Google Scholar 

  32. Russel DF, Wilkens LA, Moss F. Use of behavioural stochastic resonance by paddlefish for feeding. Nature, 1999, 402: 291–294

    Article  Google Scholar 

  33. Pei X, Wilkens L, Moss F. Light enhances hydrodynamic signaling in the caudal photoreceptor interneuron of the crayfish. J Neurophysiol, 1996, 76: 3002–3011

    CAS  Google Scholar 

  34. Paulsson J, Berg OG, Ehrenberg M. Stochastic focusing: Fluctuation- enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA, 2000, 97: 7148–7153

    Article  CAS  Google Scholar 

  35. Berg OG, Paulsson J, Ehrenberg M. fluctuations in repressor control: thermodynamic constraints on stochastic focusing. Biophys J, 2000, 79: 2944–2953

    Article  CAS  Google Scholar 

  36. Paulsson J, Ehrenberg M. Random signal-fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys Rev Lett, 2000, 84: 5447–5450

    Article  CAS  Google Scholar 

  37. Zhou TS, Zhang JJ, Yuan ZJ, Chen LN. Synchronization of genetic oscillators. Chaos, 2008, 18: 037126

    Article  Google Scholar 

  38. Baptista MS, Kurths J. Transmission of information in active networks. Phys Rev E, 2008, 77: 026205

    Article  CAS  Google Scholar 

  39. Liu Q, Jia Y. Fluctuations-induced switch in the gene transcriptional regulatory system. Phys Rev E, 2004, 70: 041907

    Article  Google Scholar 

  40. Weintraub H. Formation of stable transcription complexes as assayed by analysis of individual templates. Proc Natl Acad Sci USA. 1988, 85: 5819–5823

    Article  CAS  Google Scholar 

  41. Van Roon MA., Aten JA, Van Oven CH, Charles R, Lamers WH. The initiation of hepatocyte-specific gene expression within embryonic hepatocytes is a stochastic event. Dev Biol, 1989, 136: 508–516

    Article  Google Scholar 

  42. Fiering S, Northrop JP, Nolan GP, Mattila PS, Crabtree GR, Herzenberg LA. Single cell assay of a transcription factor reveals threshold in transcription activated by signals emanating from the T cell antigen receptor. Genes Dev, 1990, 4: 1823–1834

    Article  CAS  Google Scholar 

  43. Wijgerde M, Grosveld F, Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature, 1995, 377: 209–213

    Article  CAS  Google Scholar 

  44. Ahmad K, Henikoff S. Modulation of a transcription factor counteracts heterochromatic gene-silencing in drosophila. Cell, 2001, 104: 839–847

    Article  CAS  Google Scholar 

  45. Hu G, Ditzinger T, Ning CZ, Haken H. Stochastic resonance without external periodic force. Phys Rev Lett, 1993, 71: 807–810

    Article  Google Scholar 

  46. Zhong S, Xin HW. Noise-induced oscillations and internal stochastic resonance in a model of excitable biomembrane. Chem Phys Lett, 2000, 321: 309–314

    Article  CAS  Google Scholar 

  47. McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A, 1989, 39: 4854–4869

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, N. Influences of a periodic signal on a noisy synthetic gene network. Sci. China Chem. 54, 992–997 (2011). https://doi.org/10.1007/s11426-011-4285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4285-z

Keywords

Navigation