Skip to main content
Log in

A new Cu2+-induced color reaction of a rhodamine derivative N-(3-carboxy)acryloyl rhodamine B hydrazide

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new rhodamine derivative, N-(3-carboxy)acryloyl rhodamine B hydrazide (CARB), has been synthesized, and its unusual spectroscopic reaction with Cu2+ has been investigated. The derivative exhibits a rapid and reversible non-fluorescent absorption upon coordination to Cu2+, which is a rather unusual phenomenon for rhodamine B derivatives. Stoichiometric measurements using the Job’s method and the molar ratio method reveal that one CARB molecule combines two Cu2+ ions, and the two Cu2+ ions play different roles: one opens the spirocyclic structure and the other quenches the fluorescence of the xanthene moiety. This reaction mechanism is supported by a comparative study on the model compound N-acryloyl rhodamine B hydrazide as well as by the density functional theory calculations. Furthermore, the absorption response of CARB is highly selective for Cu2+ over other common ions, which implies that CARB may be used as a colorimetric probe for the rapid visual detection of Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim HN, Lee MH, Kim HJ. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev, 2008, 37: 1465–1472

    Article  CAS  Google Scholar 

  2. Bejia M, Afonso CAM, Martinho JMG. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem Soc Rev, 2009, 38: 2410–2433

    Article  Google Scholar 

  3. Shi W, Ma H. Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem Commun, 2008, 1856-1858

  4. Liu C, Zhou ZG, Gao Y, Yang H, Li BG, Li FY, Huang CH. Fluorescence turn-on chemosensor for Hg2+ based on a rhodamine derivative and its application in bioimaging. Sci China, Ser B, 2009, 53: 760–764

    Article  Google Scholar 

  5. Chen X, Wang X, Wang S, Shi W, Wang K, Ma H. A highly selective and sensitive fluorescence probe for the hypochlorite. Chem Eur J, 2008, 14: 4719–4724

    Article  CAS  Google Scholar 

  6. Boyarskiy VP, Belov VN, Medda R, Hell SW. Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chem Eur J, 2008, 14: 1784–1792

    Article  CAS  Google Scholar 

  7. Bonnet D, Riche S, Loison S. Solid-phase organic tagging resins for labeling biomolecules by 1,3-dipolar cycloaddition: application to the synthesis of a fluorescent non-peptidic vasopressin receptor ligand. Chem Eur J, 2008, 14: 6247–6254

    Article  CAS  Google Scholar 

  8. Li ZF, Mei L, Xiang Y, Tong AJ. Novel colorogenic probe of rhodamine B derivative for the detection of copper ion. Chin J Anal Chem, 2008, 36: 915–919

    Google Scholar 

  9. Xiang Y, Tong AJ. A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. Org Lett, 2006, 8: 1549–1552

    Article  CAS  Google Scholar 

  10. Zeng X, Wu C, Dong L, Mou L, Xue SF, Tao Z. A New Tripodal rhodamine B derivative as a highly selective and sensitive fluorescence chemosensor for copper(II). Sci China, Ser B, 2009, 53: 523–528

    Article  Google Scholar 

  11. Zhang X, Shiraishi Y, Hirai T. Cu(II)-selective green fluorescence of a rhodamine-diacetic acid conjugate. Org Lett, 2007, 9: 5039–5042

    Article  CAS  Google Scholar 

  12. Dong M, Ma TH, Zhang AJ, Dong YM, Wang YW, Peng Y. A series of highly sensitive and selective fluorescent and colorimetric “off-on” chemosensors for Cu(II) based on rhodamine derivatives. Dyes Pigm, 2010, 87: 164–172

    Article  CAS  Google Scholar 

  13. Kenmoku S, Urano Y, Kojima H, Nagano T. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc, 2007, 129: 7313–7318

    Article  CAS  Google Scholar 

  14. Zhou Z, Yu M, Yang H, Huang K, Li F, Yi T, Huang C. FRET-based sensor for imaging chromium(III) in living cells. Chem Commun, 2008, 3387-3389

  15. Kwon JY, Jang YJ, Lee YJ, Yoon JY. A highly selective fluorescent chemosensor for Pb2+. J Am Chem Soc, 2005, 127: 10107–10111

    Article  CAS  Google Scholar 

  16. Rieth T, Sasamoto K. Detection of nitric oxide and nitrite by using a rhodamine-type fluorescent indicator. Anal Commun, 1998, 35: 195–197

    Article  CAS  Google Scholar 

  17. Hu Z, Lin C, Wang X, Ding L, Cui C, Liu S, Lu HY. Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine-phenylurea conjugate. Chem Commun, 2010, 46: 3765–3767

    Article  CAS  Google Scholar 

  18. Chen X, Ma H. A selective fluorescence-on reaction of spiro form fluorescein hydrazide with Cu(II). Anal Chim Acta, 2006, 575: 217–222

    Article  CAS  Google Scholar 

  19. Misra A, Shahid M, Dwivedi P. An efficient thiourea-based colorimetric chemosensor for naked-eye recognition of fluoride and acetate anions: UV-vis and 1H NMR studies. Talanta, 2009, 80: 532–538

    Article  CAS  Google Scholar 

  20. Tan J, Yan XP. 2,1,3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+. Talanta, 2008, 76: 9–14

    Article  CAS  Google Scholar 

  21. Kaur P, Kaur S, Singh K. Colorimetric detection of cyanide in water using a highly selective Cu2+ chemosensor. Inorg Chem Commun, 2009, 12: 978–981

    Article  CAS  Google Scholar 

  22. Ma HM, Huang YX, Liang SC. A new polymeric chromogenic reagent for the determination of copper(II). Anal Chim Acta, 1996, 334: 213–219

    Article  CAS  Google Scholar 

  23. Wu SP, Huang RY, Du KJ. Colorimetric sensing of Cu(II) by 2-methyl-3-[(pyridin-2-ylmethyl)amino]-1,4-naphthoquinone: Cu(II) induced deprotonation of NH responsible for color changes. Dalton Trans, 2009, 4735-4740

  24. Shi W, Sun S, Li X, Ma H. Imaging different interactions of mercury and silver with live cells by a designed fluorescence probe rhodamine B selenolactone. Inorg Chem, 2010, 49: 1206–1210

    Article  CAS  Google Scholar 

  25. Chen X, Jia J, Ma H, Wang S, Wang X. Characterization of rhodamine B hydroxylamide as a highly selective and sensitive fluorescence probe for copper(II). Anal Chim Acta, 2009, 632: 9–14

    Article  CAS  Google Scholar 

  26. Jia J, Chen W, Ma H, Wang K, Zhao C. Use of a rhodamine-based bifunctional probe in N-terminal specific labeling of thermomyces lanuginosus xylanase. Mol Biosyst, 2010, 6: 1829–1833

    Article  CAS  Google Scholar 

  27. Jia J, Wang K, Shi W, Chen S, Li X, Ma H. Rhodamine B piperazinoacetohydrazine: a water-soluble spectroscopic reagent for pyruvic acid labeling. Chem Eur J, 2010, 16: 6638–6643

    CAS  Google Scholar 

  28. Suglhara G, Yamakawa K, Murala Y, Tanaka M. Effects of pH, pNa, and temperature on micelle formation and solubilization of cholesterol in aqueous solutions of Bile Salts. J Phys Chem, 1982, 86: 2784–2788

    Article  Google Scholar 

  29. Joshi BP, Park J, Lee WI, Lee KH. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta, 2009, 78: 903–909

    Article  CAS  Google Scholar 

  30. Ballesteros E, Moreno D, Gomez T, Rodrıguez T, Rojo J, Maria GV, Torroba T. A new selective chromogenic and turn-on fluorogenic probe for copper(II) in water-acetonitrile 1:1 solution. Org Lett, 2009, 11: 1269–1272

    Article  CAS  Google Scholar 

  31. Wang ZJ, Fanb XJ, Li DH, Feng L. A highly selective and colorimetric naked-eye chemosensor for Cu2+. Spectrochim. Acta, Part A, 2008, 71: 1224–1227

    Article  Google Scholar 

  32. Sun Y, Liu YL, Chen ML, Guo W. A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group. Talanta, 2009, 80: 996–1000

    Article  CAS  Google Scholar 

  33. Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc, 1997, 119: 7386–7387

    Article  CAS  Google Scholar 

  34. Fan LJ, Jones WE. A highly selective and sensitive inorganic/organic hybrid polymer fluorescence “turn-on” chemosensory system for iron cations. J Am Chem Soc, 2006, 128: 6784–6785

    Article  CAS  Google Scholar 

  35. Liu Y, Miao Q, Zhang S, Huang X, Zheng L, Cheng Y. A fluorescent chemosensor for transition-metal ions based on optically active polybinaphthyl and 2,2′-Bipyridine. Macromol Chem Phys, 2008, 209: 685–694

    Article  CAS  Google Scholar 

  36. Mokhir A, Kiel A, Herten DP, Kraemer R. Fluorescent sensor for Cu2+ with a tunable emission wavelength. Inorg Chem, 2005, 44: 5661–5666

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks G W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr J A, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck A D, Raghavachari K, Foresman J B, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Gaussian, Inc, Pittsburgh PA, 2003

    Google Scholar 

  38. Lee MH, Kim HJ, Yoon SW, Park NJ, Kim JS. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine. Org Lett, 2008, 10: 213–216

    Article  CAS  Google Scholar 

  39. Swamy KMK, Ko SK, Kwon SK, Lee HN, Mao C, Kim JM, Lee JH, Kim J, Shin I, Yoon J. Boronic acid-linked fluorescent and colorimetric probes for copper ion. Chem Commun, 2008, 5915-5917

  40. Yu M, Shi M, Chen Z, Li F, Li X, Gao Y, Xu J, Yang H, Zhou Z, Yi T, Huang C. Highly sensitive and fast responsive fluorescence Turn-On chemodosimeter for Cu2+ and its application in live cell imaging. Chem Eur J, 2008, 14: 6892–6900

    Article  CAS  Google Scholar 

  41. Kim YR, Kim HJ, Kim JS, Kim H. Rhodamine-based “turn-on” fluorescent chemodosimeter for Cu(II) on ultrathin Platinum films as molecular switches. Adv Mater, 2008, 20: 4428–4432

    Article  CAS  Google Scholar 

  42. Xiang Y, Tong AJ, Jin P, Ju Y. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org Lett, 2006, 8: 2863–2866

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiMin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Chen, J., Ma, H. et al. A new Cu2+-induced color reaction of a rhodamine derivative N-(3-carboxy)acryloyl rhodamine B hydrazide. Sci. China Chem. 54, 1101–1108 (2011). https://doi.org/10.1007/s11426-011-4275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4275-1

Keywords

Navigation