Skip to main content
Log in

The first principle study on the spectra of FPt monomer and its excimer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The structural, electronic and spectroscopic properties of monomer FPt (2-(4′,6′-difluorophenyl)pyridinato-N,C 2′)(2,4-pentanedionato- O,O) (1) and dimer [FPt]2 (2) were explored within the density functional theory (DFT) and time-dependent DFT (TD-DFT). The calculated geometry parameters and spectroscopic results agree well with the experimental observation. In the ground state, FPt exists in the form of monomer, while in the excited state, dimer [FPt]2 forms with a Pt-Pt contraction of 0.05 nm due to the promotion of σ[d z2(Pt2)] to π*(phenylryridyl) and σ[p z (Pt2)]. Transition properties of monomer and excimer are different in nature: the former originates from mixed transitions of 3MLCT and 3ILCT, while the latter is dominated by 3MMLCT transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanno H, Sun YR, Forrest S R. High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices. Appl Phys Lett, 2005, 86: 263502 (1–3)

    Article  Google Scholar 

  2. Feng J, Okamoto T, Simonen J, Kawata S. Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons. Appl Phys Lett, 2007, 90: 081106 (1–3)

    Article  Google Scholar 

  3. Seo JH, Seo JH, Park JH, Kim YK. Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors (red, green, and blue). Appl Phys Lett, 2007, 90: 203507 (1–3)

    Article  Google Scholar 

  4. Tong QX, Lai SL, Chan MY, Tang JX. High-efficiency nondoped white organic light-emitting devices. Appl Phys Lett, 2007, 91:023503 (1–3)

    Article  Google Scholar 

  5. Bolink HJ, De Angelis F, Baranoff E, Klein C, Fantacci S, Coronado E, Sessolo M, Nazeeruddin MK. White-light phosphorescence emission from a single molecule. ChemComm, 2009, 4672–4674

  6. Yu XM, Kwok HS, Wong WY, Zhou GJ. High-efficiency white organic light-emitting devices based on a highly amorphous iridium(III) orange phosphor. Chem Mater, 2006, 18: 5097–5103

    Article  CAS  Google Scholar 

  7. Law GL, Wong KL, Tam HL, Cheah KW, Wong WT. White OLED with a single-component europium complex. Inorg Chem, 2009, 48: 10492–10494

    Article  CAS  Google Scholar 

  8. Yang SH, Hong BC, Huang SF. Luminescence enhancement and emission color adjustment of white organic light-emitting diodes with quantum-well-like structures. J Appl Phys, 2009, 105: 113105 (1–7)

    Article  Google Scholar 

  9. Yang SH, Liu MH, Su YK. Stable and highly bright white organic light-emitting diode based on 4,4,4-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine. J Appl Phys, 2006, 100: 083111 (1–4)

    Article  Google Scholar 

  10. Li L, Yu JS, Tang XQ, Wang T, Li W, Jiang YD. Efficient bright white organic light-emitting diode based on non-doped ultrathin 5,6,11,12-tetraphenylnaphthacene layer. J Lumin, 2008, 128: 1783–1786

    Article  CAS  Google Scholar 

  11. Ho CL, Wang WY, Wang Q, Ma DG, Wang LX, Ling ZY. A multifunctional iridium-carbazolyl orange phosphor for high-performance two-element WOLED exploiting exciton-managed fluorescence/phosphorescence. Adv Funct Mater, 2008, 18: 928–937

    Article  CAS  Google Scholar 

  12. Thompson M E. EL2006 Technical Digest, 2006, 5

  13. Li J Y, Liu D, Ma CW, Lengyel O, Lee CS, Tung CH, Lee ST. White-light emission from a single-emitting-component organic electroluminescent device. Adv Mater, 2004, 16: 1538–1541

    Article  CAS  Google Scholar 

  14. Mazzeo M, Vitale V, Sala FD, Anni M, Barbarella G, Favaretto L, Sotgiu G, Cingolani R, Gigli G. Bright white organic light-emitting devices from a single active molecular material. Adv Mater, 2005, 17: 34–39

    Article  CAS  Google Scholar 

  15. Liu Y, Nishiura M, Wang Y, Hou ZM. π-Conjugated aromatic enynes as a single-emitting component for white electroluminescence. J Am Chem Soc, 2006, 128: 5592–5593

    Article  CAS  Google Scholar 

  16. Adamovich V, Brooks J, Tamayo A, Alexander AM, Djurovich PI, D’Andrade BW, Adachi C, Forrest SR, Thompson ME. High efficiency single dopant white electrophosphorescent light emitting diodes, New J Chem, 2002, 26: 1171–1178

    Article  CAS  Google Scholar 

  17. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME. Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem, 2002, 41: 3055–3066

    Article  CAS  Google Scholar 

  18. D’Andrade BW, Brooks J, Adamocich V, Thompson ME, Forrest SR. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater, 2002, 14: 1032–1036

    Article  Google Scholar 

  19. D’Andrade BW, Forrest SR. White organic light-emitting devices for solid-state lighting. Adv Mater, 2004, 16: 1585–1595

    Article  Google Scholar 

  20. D’Andrade BW, Forrest SR. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices. J Appl Phys, 2003, 94: 3101–3109

    Article  Google Scholar 

  21. Connick WB, Marsh RE, Schaefer WP, Gray HB. Linear-chain structures of platinum(II) diimine complexes. Inorg Chem, 1997, 36: 913–922

    Article  CAS  Google Scholar 

  22. Lai SW, Chen MCW, Cheung KK, Che CM. Spectroscopic properties of luminescent platinum(II) complexes containing 4,4′,4″-tri- tert-butyl-2,2′:6′,2″-terpyridine (tBu3tpy). Crystal structures of [Pt (tBu3tpy)Cl]ClO4 and [Pt(tBu3tpy){CH2C(O)Me}]ClO4. Inorg Chem, 1999, 38: 4262–4267

    Article  CAS  Google Scholar 

  23. Lai SW, Chen MCW, Cheung TC, Peng SM, Che CM. Probing d8-d8 interactions in luminescent mono- and binuclear cyclometalated platinum(II) complexes of 6-phenyl-2,2′-bipyridines. Inorg Chem, 1999, 38: 4046–4055

    Article  CAS  Google Scholar 

  24. Zhou X, Zhang HX, Pan QJ, Li MX, Wang Y, Che CM. Electronic structures and spectroscopic properties of [Pt(CNMe)2(CN)2]n (n = 1–4): A theoretical exploration of promising phosphorescent materials. Eur J Inorg Chem, 2007, 2181–2188

  25. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys, 1980, 58: 1200–1210

    Article  CAS  Google Scholar 

  26. Casida ME, Jamorski C, Casida KC, Salahub DRJ Molecular excitation energies to high-lying bound states from time- dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys, 1998, 108: 4439–4449

    Article  CAS  Google Scholar 

  27. Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J, 2002, 48: 369–385

    Article  CAS  Google Scholar 

  28. Pyykkö P, Runerberg N, Mendizabal F. Theory of the d10-d10 closed-shell attraction: 1. Dimers near equilibrium. Chem Eur J, 1997, 3: 1451–1457

    Article  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Omasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03: Revision B.03. Gaussian, Inc.: Pittsburgh, PA. 2003

    Google Scholar 

  30. Zhou X, Pan QJ, Xia BH, Li MX, Zhang HX, Tung AC. DFT and TD-DFT calculations on the electronic structures and spectroscopic properties of cyclometalated platinum(II) complexes. J Phys Chem A, 2007, 111: 5465–5472

    Article  CAS  Google Scholar 

  31. Che CM, Yam VWW, Wong WT, Lai TF. Spectroscopy and x-ray crystal structure of luminescent bis[bis(diphenylphosphino)methane] tetracyanodiplatinum. Inorg Chem, 1989, 28: 2908–2910

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongXing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Zhang, H. & Pan, Q. The first principle study on the spectra of FPt monomer and its excimer. Sci. China Chem. 54, 968–974 (2011). https://doi.org/10.1007/s11426-011-4267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4267-1

Keywords

Navigation