Skip to main content
Log in

Sodium dodecyl sulfate sensitized electrochemical method for subnanomole level determination of ortho-phenylphenol at a novel disposable electrode

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of ortho-phenylphenol (OPP) at a disposable electrode (an improved wax-impregnated graphite electrode) in the presence of sodium dodecyl sulfate (SDS) was studied for the first time. The results demonstrated that the electrocatalytic oxidation process of OPP was accompanied with two-charge-two-proton transference. The electronic transmission coefficient (α) and diffusion coefficient (D R) for OPP were calculated to be 0.8126 and 3.61 × 10−2 cm2/s, respectively. The electrochemical signal was apparently improved by SDS at the disposable electrode and the oxidative peaks current was proportional to the concentration of OPP over the range from 1.0 × 10−9 to 4.0 × 10−6 mol/L with the detection limit of 8.7 × 10−10 mol/L. This novel and highly sensitive method can be successfully applied to detect OPP in the orange rind sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capitán-Vallvey LF, Deheidel MKA, Avidad R. Solid-phase spectrophosphorimetric determination of the pesticide o-phenylphenol in water and vegetables. Anal Bioanal Chem, 2003, 375: 685–691

    Google Scholar 

  2. Heberer T, Stan HJ. Detection of more than 50 substituted phenols as their t-butyldimethylsilyl derivatives using gas chromatography-mass spectrometry. Anal Chim Acta, 1997, 341: 21–34

    Article  CAS  Google Scholar 

  3. Narang AS, Vernoy CA, Eadon GA. Evaluation of Nielsen-Kryger steam distillation technique for recovery of phenols from soil. J AOAC Int, 1983, 66: 1330–1334

    CAS  Google Scholar 

  4. Appel KE. The carcinogenicity of the biocide ortho-phenylphenol. Arch Toxicol, 2000, 74: 61–71

    Article  CAS  Google Scholar 

  5. Yang L, Kotani A, Hakamata H, Kusu F. Determination of ortho-phenylphenol residues in lemon rind by High-Performance Liquid Chromatography with electrochemical detection using a microbore column. Anal Sci, 2004, 20: 199–203

    Article  CAS  Google Scholar 

  6. Kolbe N, Andersson JT. Simple and sensitive determination of o-phenylphenol in citrus fruits using gas chromatography with atomic emission or mass spectrometric detection. J Agric Food Chem, 2006, 54: 5736–5741

    Article  CAS  Google Scholar 

  7. Saad B, Haniff NH, Saleh MI, Hashim NH, Abu A, Ali N. Determination of ortho-phenylphenol, diphenyl and diphenylamine in apples and oranges using HPLC with fluorescence detection. Food Chem, 2004, 84: 313–317

    Article  CAS  Google Scholar 

  8. Yamazaki Y, Ninomiya T. Determination of benomyl. diphenyl. o-phenylphenol. thiabendazole. chlorpyrifos. methidathion. and methyl parathion in oranges by solid-phase extraction. liquid chromatography. and gas chromatography. J AOAC Int, 1999, 82: 1474–1478

    CAS  Google Scholar 

  9. Motohashi N, Nagashima H, Meyer R. High-performance liquid-chromatography of fungicides in citrus-fruits. J Liq Chromatogr, 1991, 14: 3591–3602

    Article  CAS  Google Scholar 

  10. Zamora T, Hidalgo C, Lopez FJ, Hernandez F. Determination of fungicide residues in fruits by coupled-column liquid chromatography. J Sep Sci, 2004, 27: 645–652

    Article  CAS  Google Scholar 

  11. Blasco C, Pico Y, Font G. Monitoring of five postharvest fungicides in fruit and vegetables by matrix solid-phase dispersion and liquid chromatography/mass spectrometry. J AOAC Int, 2002, 85: 704–711

    CAS  Google Scholar 

  12. Yoshioka N, Akiyama Y, Teranishi K. Rapid simultaneous determination of o-phenylphenol, diphenyl, thiabendazole, imazalil and its major metabolite in citrus fruits by liquid chromatography-mass spectrometry using atmospheric pressure photoionization. J Chromatogr A, 2004, 1022: 145–150

    Article  CAS  Google Scholar 

  13. Prousalis KP, Polygenis DA, Syrokou A, Lamari FN, Tsegenidis T. Determination of carbendazim, thiabendazole, and o-phenylphenol residues in lemons by HPLC following sample clean-up by ion-pairing. Anal Bioanal Chem, 2004, 379: 458–463

    Article  CAS  Google Scholar 

  14. Hermann TS, Post AA. Quantitative determination of traces of indole and o-phenylphenol by direct aqueous-injection gas chromatography. Anal Chem, 1968, 40: 1573–1576

    Article  CAS  Google Scholar 

  15. Anastassiades M, Scherbaum E. Multiresidue method for determination of pesticide residues in citrus fruits by GC-MSD. II. Analysis of citrus fruits of different origin. Deut Lebensm-Rundsch, 1997, 93: 393–396

    CAS  Google Scholar 

  16. Johnson GD, Harsy SG, Geronimo J, Wise JM. Orthophenylphenol and phenylhydroquinone residues in citrus fruit and processed citrus products after postharvest fungicidal treatments with sodium orthophenylphenate in California and Florida. J Agric Food Chem, 2001, 49: 2497–2502

    Article  CAS  Google Scholar 

  17. Yu L, Schoen R, Dunkin A, Firman M, Cushman H, Fontanilla A. Determination of o-phenylphenol, diphenylamine, and propargite pesticide residues in selected fruits and vegetables by gas chromatography/mass spectrometry. J AOAC Int, 1997, 80: 651–656

    CAS  Google Scholar 

  18. Bartels MJ, Brzak KA, Bormett GA. Determination of ortho-phenylphenol in human urine by gas chromatography-mass spectrometry. J Chromatogr B, 1997, 703: 97–104

    Article  CAS  Google Scholar 

  19. Caulfied PH, Robinson RJ. Spectrophotometric determination of o-phenylphenol with Titanium sulfate. Anal Chem, 1953, 25: 982–983

    Article  CAS  Google Scholar 

  20. García Reyes JF, Llorent Martínez EJ, Ortega Barrales P, Molina Díaz A. Continuous-flow separation and pre-concentration coupled on-line to solid-surface fluorescence spectroscopy for the simultaneous determination of o-phenylphenol and thiabendazole. Anal Bioanal Chem, 2004, 378: 429–437

    Article  Google Scholar 

  21. Rusling JF. Controlling electrochemical catalysis with surfactant microstructures. Acc Chem Res, 1991, 24: 75–81

    Article  CAS  Google Scholar 

  22. Plavsic M, Krznaric D, Cosovic B. The electrochemical processes of copper in the presence of Triton X-100. Electroanalysis, 1994, 6: 469–474

    Article  CAS  Google Scholar 

  23. Hu SS, Yan YQ, Zhao ZF. Determination of progesterone based on the enhancement effect of surfactants in linear sweep polarography. Anal Chim Acta, 1991, 248: 103–108

    Article  CAS  Google Scholar 

  24. Yi HC, Wu KB, Hu SS, Cui DF. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants. Talanta, 2001, 55: 1205–1210

    Article  CAS  Google Scholar 

  25. Zhang SH, Wu KB, Hu SS. Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium. Talanta, 2002, 58: 747–754

    Article  CAS  Google Scholar 

  26. Hu SS, Wu KB, Yi HC, Cui DF. Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Anal Chim Acta, 2002, 464: 209–216

    Article  CAS  Google Scholar 

  27. Lawrence NS, Jiang L, Jones TGJ, Compton RG. Voltammetric characterization of a N,N′-diphenyl-p-phenylenediamine-loaded screen-printed electrode: A disposable sensor for hydrogen sulfide. Anal Chem, 2003, 75: 2054–2059

    Article  CAS  Google Scholar 

  28. Jenkins DM, Chami B, Kreuzer M, Presting G, Alvarez AM, Liaw BY. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode. Anal Chem, 2006, 78: 2314–2318

    Article  CAS  Google Scholar 

  29. Liu GD, Lin YY, Wu H, Lin YH. Voltammetric detection of Cr(VI) with disposable screen-printed electrode modified with gold nanoparticles. Environ Sci Technol, 2007, 41: 8129–8134

    Article  CAS  Google Scholar 

  30. Civit L, Nassef HM, Fragoso A, O’sullivan CK. Amperometric determination of ascorbic acid in real samples using a disposable screen-printed electrode modified with electrografted o-aminophenol film. J Agric Food Chem, 2008, 56: 10452–10455

    Article  CAS  Google Scholar 

  31. Zhang QT, Jagannathan L, Subramanian V. Label-free low-cost disposable DNA hybridization detection systems using organic TFTs. Biosens Bioelectron, 2010, 25: 972–977

    Article  CAS  Google Scholar 

  32. Kokkinos C, Economou A, Koupparis M. Determination of trace cobalt( II) by adsorptive stripping voltammetry on disposable microfabricated electrochemical cells with integrated planar metal-film electrodes. Talanta, 2009, 77: 1137–1142

    Article  CAS  Google Scholar 

  33. Crew A, Cowell DC, Hart JP. Development of an anodic stripping voltammetric assay, using a disposable mercury-free screen-printed carbon electrode, for the determination of zinc in human sweat. Talanta, 2008, 75: 1221–1226

    Article  CAS  Google Scholar 

  34. Lee SR, Lee YT, Sawada K, Takao H, Ishida M. Development of a disposable glucose biosensor using electroless-plated Au/Ni/copper low electrical resistance electrodes. Biosens Bioelectron, 2008, 24: 410–414

    Article  CAS  Google Scholar 

  35. Connors TF, Rusling JF, Owlia A. Determination of standard potentials and electron-transfer rates for halobiphenyls from electrocatalytic data. Anal Chem, 1985, 57: 170–174

    Article  CAS  Google Scholar 

  36. Kamau GN, Leipert T, Shukla SS, Rusling JF. Electrochemistry of bipyridyl derivatives of cobalt in solutions of anionic and cationic micelles. J Electroanal Chem, 1987, 233: 173–187

    Article  CAS  Google Scholar 

  37. He Q, Dang XP, Hu CG, Hu SS. The effect of cetyltrimethylammonium bromide on the electrochemical determination of thyroxine. Colloids Surf, B, 2004, 35: 93–98

    Article  CAS  Google Scholar 

  38. Xie PP, Chen XX, Wang F, Hu CG, Hu SS. Electrochemical behaviors of adrenaline at acetylene black electrode in the presence of sodium dodecyl sulfate. Colloids Surf, B, 2006, 48: 17–23

    Article  CAS  Google Scholar 

  39. Iyer RN, Schmidt WE. Observations on the direct electrochemistry of bovine copper-zinc superoxide dismutase. Biosens Bioelectron, 1992, 27: 393–404

    CAS  Google Scholar 

  40. Yin ZH, Xu Q, Tu Y, Zou QJ, Yu JH, Zhao YD. Electrocatalysis of emodin at multi-wall nanotubes. Bioelectrochemistry, 2008, 72: 155–160

    Article  CAS  Google Scholar 

  41. Zare HR, Namazian M, Nasirizadeh N. Electrochemical behavior of quercetin: Experimental and theoretical studies. J Electroanal Chem, 2005, 584: 77–83

    Article  CAS  Google Scholar 

  42. Hegde RN, Shetti NP, Nandibewoor ST. Electro-oxidation and determination of trazodone at multi-walled carbon nanotube-modified glassy carbon electrode. Talanta, 2009, 79: 361–368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYa Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Li, J., Meng, D. et al. Sodium dodecyl sulfate sensitized electrochemical method for subnanomole level determination of ortho-phenylphenol at a novel disposable electrode. Sci. China Chem. 54, 1116–1122 (2011). https://doi.org/10.1007/s11426-011-4264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4264-4

Keywords

Navigation