Skip to main content
Log in

Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: Band gap and energy level engineering

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Three two-dimensional like conjugated copolymers PFSDCN, PFSDTA and PFSDCNIO, which consist of alternating fluorene and triphenylamine main chain, and different pendant acceptor groups (malononitrile, 1,3-diethtyl-2-thiobarbituric acid and 2-(1,2-dihydro-1-oxoinden-3-ylidene)malononitrile) with thiophene as π-bridge, have been designed, synthesized and characterized. The structure-property relationships of the two-dimensional like conjugated copolymers were systematically investigated. The absorption spectra, band gaps, and energy levels of the polymers were effectively tuned by simply attaching different acceptor groups. As the electron-withdrawing ability of the acceptors increased, the band gaps of the polymers were narrowed from 2.05 to 1.61 eV; meanwhile, the LUMO energy levels of the polymers decreased from −3.27 to −3.75 eV, whereas their relatively deep HOMO energy levels of ∼−5.35 eV were preserved. BHJ solar cells were fabricated and characterized by using the three polymers as donor materials and the highest power conversion efficiency of 2.87% was achieved for the device based on PFSDTA:(6,6)-phenyl-C71-butyric acid methyl ester blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Brabec CJ, Sariciftci NS, Hummelen JC. Plastic solar cells. Adv Funct Mater, 2001, 11(1): 15–26

    Article  CAS  Google Scholar 

  3. Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107(4): 1324–1338

    Article  Google Scholar 

  4. Thompson BC, Frechet JMJ. Organic photovoltaics-Polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47(1): 58–77

    Article  CAS  Google Scholar 

  5. Helgesen M, Sondergaard R, Krebs FC. Advanced materials and processes for polymer solar cell devices. J Mater Chem, 2010, 20(1): 36–60

    Article  CAS  Google Scholar 

  6. Zhao JH, Wang AH, Green MA, Ferrazza F. 19.8% Efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett, 1998, 73(14): 1991–1993

    Article  CAS  Google Scholar 

  7. Nazeeruddin MK, DeAngelis F, Fantacci S, Selloni A, Viscardi G, Liska P. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc, 2005, 127: 16835–16847

    Article  CAS  Google Scholar 

  8. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed, 2003, 42(29): 3371–3375

    Article  CAS  Google Scholar 

  9. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ. Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency. Adv Mater, 2006, 18(6): 789–794

    Article  CAS  Google Scholar 

  10. Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42(11): 1709–1718

    Article  CAS  Google Scholar 

  11. Kroon R, Lenes M, Hummelen JC, Blom PWM, De Boer B. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym Rev, 2008, 48(3): 531–582

    Article  CAS  Google Scholar 

  12. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109(11): 5868–5923

    Article  CAS  Google Scholar 

  13. Inganas O, Zhang FL, Tvingstedt K, Andersson LM, Hellstrom S, Andersson MA. Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. Adv Mater, 2010, 22(20): E100–E116

    Article  Google Scholar 

  14. Zhan X, Zhu D. Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem 2010, 1(4): 409–419

    Article  CAS  Google Scholar 

  15. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv Mater, 2007, 19(12): 1551–1566

    Article  CAS  Google Scholar 

  16. Wang EG, Wang M, Wang L, Duan CH, Zhang J, Cai WZ, He C, Wu HB, Cao Y. Donor polymers containing benzothiadiazole and four thiophene rings in their repeating units with improved photovoltaic performance. Macromolecules, 2009, 42(13): 4410–4415

    Article  CAS  Google Scholar 

  17. Svensson M, Zhang FL, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganas O, Andersson MR. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater, 2003, 15(12): 988–991

    Article  CAS  Google Scholar 

  18. Zhang FL, Mammo W, Andersson LM, Admassie S, Andersson MR, Inganas O. Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells. Adv Mater 2006, 18(16): 2169–2173

    Article  CAS  Google Scholar 

  19. Wang EG, Wang L, Lan LF, Luo C, Zhuang WL, Peng JB, Cao Y. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett, 2008, 92(3): 033307

    Article  Google Scholar 

  20. Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater, 2007, 19(17): 2295–2300

    Article  CAS  Google Scholar 

  21. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc, 2008, 130(2): 732–742

    Article  CAS  Google Scholar 

  22. Qin R, Li W, Li C, Du C, Veit C, Schleiermacher H-F, Andersson M, Bo Z, Liu Z, Inganas O, Wuerfel U, Zhang FL. A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc, 2009, 131(41): 14612–14613

    Article  CAS  Google Scholar 

  23. Zhu Z, Waller D, Gaudiana R, Morana M, Muhlbacher D, Scharber M, Brabec CJ. Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules, 2007, 40(6): 1981–1986

    Article  CAS  Google Scholar 

  24. Hou J, Chen H-Y, Zhang S, Li G, Yang Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc, 2008, 130(48): 16144–16145

    Article  CAS  Google Scholar 

  25. Coffin RC, Peet J, Rogers J, Bazan GC. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem, 2009, 1(8): 657–661

    Article  CAS  Google Scholar 

  26. Hou J, Park M-H, Zhang S, Yao Y, Chen LM, Li JH, Yang Y. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules, 2008, 41(16):6012–6018

    Article  CAS  Google Scholar 

  27. Zou YP, Najari A, Berrouard P, Beaupre S, Aich BR, Tao Y, Leclerc M. A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J Am Chem Soc, 2010, 132(15): 5330–5331

    Article  CAS  Google Scholar 

  28. Zhou HX, Yang LQ, Price SC, Knight KJ, You W. Enhanced Photovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew Chem Int Ed, 2010, 49: 7992–7995

    Article  CAS  Google Scholar 

  29. Huo LJ, Hou JH, Zhang SQ, Chen HY, Yang Y. A polybenzo [1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew Chem Int Ed, 2010, 49: 1500–1503.

    Article  CAS  Google Scholar 

  30. Wang EG, Hou LT, Wang ZQ, Hellstrom S, Zhang FL, Inganas O, Andersson MR. An easily synthesized blue polymer for high-performance polymer solar cells. Adv Mater 2010, 22(46): 5240–5244

    Article  CAS  Google Scholar 

  31. Yue W, Zhao Y, Shao SY, Tian HK, Xie ZY, Geng YH, Wang FS. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. J Mater Chem 2009, 19(15): 2199–2206

    Article  CAS  Google Scholar 

  32. Wong WY, Wang XZ, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater, 2007, 6(7): 521–527

    Article  CAS  Google Scholar 

  33. Piliego C, Holcombe TW, Douglas JD, Woo CH, Beaujuge PM, Frechet JMJ. Synthetic control of structural order in N-alkylthieno [3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc, 2010, 132(22): 7595–7597

    Article  CAS  Google Scholar 

  34. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22(20): E135–E138

    Article  CAS  Google Scholar 

  35. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics, 2009, 3(11): 649–653

    Article  CAS  Google Scholar 

  36. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee L, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics, 2009, 3(5): 29–303

    Article  Google Scholar 

  37. Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc, 2006, 128(14): 4911–4916

    Article  CAS  Google Scholar 

  38. Huang F, Chen K-S, Yip H-L, Hau SK, Acton O, Zhang Y, Luo J, Jen AKY. Development of new conjugated polymers with Donor-π-Bridge-Acceptor side chains for high performance Solar Cells. J Am Chem Soc 2009, 131(39): 13886–13887

    Article  CAS  Google Scholar 

  39. Duan CH, Cai WZ, Huang F, Zhang J, Wang M, Yang TB, Zhong CM, Gong X, Cao Y. Novel silafluorene-based conjugated polymers with pendant acceptor groups for high performance solar cells. Macromolecules, 2010, 43(12): 5262–5268

    Article  CAS  Google Scholar 

  40. Duan CH, Chen K-S, Huang F, Yip H-L, Liu SJ, Zhang J, Jen AKY, Cao Y. Synthesis, characterization, and photovoltaic properties of carbazole-based two-dimensional conjugated polymers with Donor-π-Bridge-Acceptor side chains. Chem Mater 2010, 22(23): 6444–6452

    Article  CAS  Google Scholar 

  41. Zhang ZG, Liu YL, Yang Y, Hou K, Peng B, Zhao G, Zhang M, Guo X, Kang ET, Li YF. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups: Synthesis and photovoltaic application. Macromolecules, 2010, 43(22): 9376–9383

    Article  CAS  Google Scholar 

  42. Hsu SL, Chen CM, Wei KH. Carbazole-based conjugated polymers incorporating push/pull organic dyes: Synthesis, characterization, and photovoltaic applications. J Polym Sci Part A Polym Chem, 2010, 48(22): 5126–5134

    Article  CAS  Google Scholar 

  43. Sahu D, Padhy H, Patra D, Huang J-H, Chu C-W, Lin H-C. Synthesis and characterization of novel low-bandgap triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics. J Polym Sci Part A Polym Chem, 2010, 48(24): 5812–5823

    Article  CAS  Google Scholar 

  44. Fan H, Zhang Z, Li Y, Zhan X. Copolymers of fluorene and thiophene with conjugated side chain for polymer solar cells: Effect of pendant acceptors. J Polym Sci Part A Polym Chem, 2011, 49(6): 1462–1470

    Article  CAS  Google Scholar 

  45. Pei QB, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J Am Chem Soc, 1996, 118(31): 7416–7417

    Article  CAS  Google Scholar 

  46. Kreyenschmidt M, Klaerner G, Fuhrer T, Ashenhurst J, Karg S, Chen WD, Lee VY, Scott JC, Miller RD. Thermally stable blue-light-emitting copolymers of poly(alkylfluorene). Macromolecules, 1998, 31(4): 1099–1103

    Article  CAS  Google Scholar 

  47. Cremer J, Bauerle P. Star-shaped perylene-oligothiophene-triphenylamine hybrid systems for photovoltaic applications. J Mater Chem, 2006, 16(9): 874–884

    Article  CAS  Google Scholar 

  48. Tabakovic I, Kunugi Y, Canavesi A, Miller LL. Thienyl triarylamines. Reactivity and spectra of cation radicals and dications. Act Chemica Sci 1998, 52(1): 131–136

    CAS  Google Scholar 

  49. Ranger M, Rondeau D, Leclerc M. New well-defined poly(2,7-fluorene) derivatives: Photoluminescence and base doping. Macromolecules, 1997, 30(25): 7686–7691

    Article  CAS  Google Scholar 

  50. Shang Y, Wen Y, Li S, Du S, He X, Cai L, Li Y, Yang L, Gao H, Song Y. A triphenylamine-containing donor-acceptor molecule for stable, reversible, ultrahigh density data storage. J Am Chem Soc, 2007, 129(38): 11674–11675

    Article  CAS  Google Scholar 

  51. Wang CD, Choy WCH. Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells. Sol Energy Mater Sol Cells, 2011, 95: 904–908

    Article  CAS  Google Scholar 

  52. Malliaras GG, Salem JR, Brock PJ, Scott C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys Rev B, 1998, 58(20): 13411–13414

    Article  Google Scholar 

  53. Goh C, Kline RJ, McGehee MD, Kadnikova EN, Frechet JMJ. Molecular-weight-dependent mobilities in regioregular poly(3-hexylthiophene) diodes. Appl Phys Lett, 2005, 86(12): 12110

    Article  Google Scholar 

  54. Li JY, Liu D, Li YQ, Lee CS, Kwong HL, Lee ST. A high T g carbazole-based hole-transporting material for organic light-emitting devices. Chem Mater, 2005, 17(5): 1208–1212

    Article  CAS  Google Scholar 

  55. Zhang Z-G, Zhang K-L, Liu G, Zhu C-X, Neoh K-G, Kang E-T. Triphenylamine-fluorene alternating conjugated copolymers with pendant acceptor groups: Synthesis, structure-property relationship, and photovoltaic application. Macromolecules, 2009, 42(8): 3104–3111

    Article  CAS  Google Scholar 

  56. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bassler H, Porsch M, Daub J. Efficient two layer leds on a polymer blend basis. Adv Mater, 1995, 7: 551–554

    Article  CAS  Google Scholar 

  57. de Leeuw DM, Simenon MMJ, Brown AR, Einerhand REF. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met, 1997, 87(1): 53–59

    Article  Google Scholar 

  58. Thompson BC, Kim YG, Reynolds JR. Spectral broadening in MEH-PPV: PCBM-Based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer. Macromolecules, 2005, 38(13): 5359–5362

    Article  CAS  Google Scholar 

  59. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258: 1474–1476

    Article  CAS  Google Scholar 

  60. Kraabel B, McBranch D, Sariciftci NS, Moses D, Heeger AJ. Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymer to C60. Phys Rev B, 1994, 50: 18543

    Article  CAS  Google Scholar 

  61. Yao Y, Shi C, Li G, Shrotriya V, Pei Q, Yang Y. Effects of C70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization. Appl Phys Lett, 2006, 89(15): 153507

    Article  Google Scholar 

  62. Zhang FL, Perzon E, Wang XJ, Mammo W, Andersson MR, Inganas O. Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Adv Funct Mater, 2005, 15(5): 745–750

    Article  CAS  Google Scholar 

  63. Mondal R, Ko S, Norton JE, Miyaki N, Becerril HA, Verploegen E, Toney MF, Bredas JL, McGehee MD, Bao ZN. Molecular design for improved photovoltaic efficiency: Band gap and absorption coefficient engineering. J Mater Chem, 2009, 19: 7195–7197

    Article  CAS  Google Scholar 

  64. Lindgren LJ, Zhang F, Andersson M, Barrau S, Hellstrom S, Mammo W, Perzon E, Inganas O, Andersson MR. Synthesis, characterization, and devices of a series of alternating copolymers for solar cells. Chem Mater, 2009, 21: 3491–3502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Huang, C. H. Wallace Choy or Yong Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, C., Wang, C., Liu, S. et al. Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: Band gap and energy level engineering. Sci. China Chem. 54, 685–694 (2011). https://doi.org/10.1007/s11426-011-4257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4257-3

Keywords

Navigation