Skip to main content
Log in

Synthesis and properties of copolymers based on 5,6-dinitrobenzothiadiazole with low band gap and broad absorption spectra

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

One polythiophene derivative PT3T and two low band gap copolymers, PBTT-T3T and PBTT, with different ratios of 5,6-dinitrobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-catalyzed Stille-coupling polymerizations. Thermal stability, X-ray diffraction analyses, UV-vis absorption spectra, photoluminescence spectra and electrochemical properties of the copolymers were investigated. The band gap estimated from UV-vis-NIR spectra of the copolymers films varied from 1.39 to 1.94 eV. Among these copolymers, the films of PBTT-T3T and PBTT, which contain the 5,6-dinitrobenzothiadiazole unit, cover a broad wavelength range in the visible and near-infrared region from 400 to 1000 nm with the maximal peak absorption around 700 nm, which is exactly matched with the maximum in the photon flux of the sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X, Steckler TT, Dasari RR, Ohira S, Potscavage WJ, Tiwari SP, Coppee S, Ellinger S, Barlow S, Bredas JL, Kippelen B, Reynolds JR, Marder SR. Dithienopyrrole-based donor-acceptor copolymers: Low band-gap materials for charge transport, photovoltaics and electrochromism. J Mater Chem, 2010, 20: 123–134

    Article  CAS  Google Scholar 

  2. Yao Y, Liang YY, Shrotriya V, Xiao SQ, Yu LP, Yang Y. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv Mater, 2007, 19: 3979–3983

    Article  CAS  Google Scholar 

  3. Wienk MM, Turbiez M, Gilot J, Janssen RAJ. Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: The effect of processing on the performance. Adv Mater, 2008, 20: 2556–2560

    Article  CAS  Google Scholar 

  4. Thompson BC, Madrigal LG, Pinto MR, Kang TS, Schanze KS, Reynolds JR. Donor-acceotor copolymers for red- and near-infrared-emitting polymer light-emitting diodes. J Polym Sci, Part A: Polym Chem, 2005, 43: 1417–1431

    Article  CAS  Google Scholar 

  5. Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, van Hal PA, Janssen RAJ. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater, 2002, 12: 709–712

    Article  CAS  Google Scholar 

  6. Qian G, Zhong Z, Luo M, Yu DB, Zhang ZQ, Wang ZY, Ma DG. Simple and efficient near-infrared organic chromophores for light-emitting diodes with single electroluminescent emission above 1000 nm. Adv Mater, 2009, 21: 111–116

    Article  CAS  Google Scholar 

  7. http://www.konarka.com.

  8. Kitamura C, Tanaka S, Yamashita Y. Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem Mater, 1996, 8: 570–578

    Article  CAS  Google Scholar 

  9. Winder C, Sariciftci NS. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J Mater Chem, 2004, 14: 1077–1086

    Article  CAS  Google Scholar 

  10. Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D, Nguyen LH, Neugebauer H, Sariciftci S, Aguirre A, Janssen G, Goovaerts E. Low band gap donor-acceptor conjugated polymers toward organic solar cells applications. Macromolecules, 2007, 40: 65–72

    Article  CAS  Google Scholar 

  11. Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater, 2007, 19: 2295–2300

    Article  CAS  Google Scholar 

  12. Yue W, Zhao Y, Shao SY, Tian HK, Xie ZY, Geng YH, Wang FS. Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. J Mater Chem, 2009, 19: 2199–2206

    Article  CAS  Google Scholar 

  13. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics, 2009, 3: 297–303

    Article  CAS  Google Scholar 

  14. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  15. Chen CH, Hsieh CH, Dubosc M, Cheng YJ, Su CS. Synthesis and characterization of bridged bithiophene-based conjugated polymers for photovoltaic applications: Acceptor strength and ternary blends. Macromolecules, 2010, 43: 697–708

    Article  CAS  Google Scholar 

  16. He YJ, Wang X, Zhang J, Li YF. Low bandgap polymers by copolymerization of thiophene with benzothiadiazole. Macromol Rapid Commun, 2009, 30: 45–51

    Article  CAS  Google Scholar 

  17. Perzon E, Wang XJ, Admassie S, Inganas O, Andersson MR. An alternating low band-gap polyfluorene for optoelectronic devices. Polymer, 2006, 47: 4261–4268

    Article  CAS  Google Scholar 

  18. Voituriez A, Mellah M, Schulz E. Design and electropolymerization of new chiral thiophene-salen complexes. Synth Met, 2006, 156: 166–175

    Article  CAS  Google Scholar 

  19. Liu YS, Zhou JY, Wan XJ, Chen YS. Synthesis and properties of acceptor-donor-acceptor molecules based on oligothiophenes with tunable and low band gap. Tetrahedron, 2009, 65: 5209–5215

    Article  CAS  Google Scholar 

  20. Van Pham C, Macomber RS, Mark HB, Jr Zimmer H. Lithiation reaction of 2,5-dibromothiophene. Carbon-13 NMR spectra of 3-substituted derivatives. J Org Chem, 1984, 49: 5250–5253

    Article  Google Scholar 

  21. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc, 2007, 130: 732–742

    Article  Google Scholar 

  22. Samitsu S, Shimomura T, Heike S, Hashizume T, Ito K. Effective production of poly(3-alkylthiophene) nanofibers by means of Whisker method using anisole solvent: Structural, optical, and electrical properties. Macromolecules, 2008, 41: 8000–8010

    Article  CAS  Google Scholar 

  23. Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y. Absorption spectra modification in poly(3-hexylthiophene): Methanofullerene blend thin films. Chem Phys Lett, 2005, 411: 138–143

    Article  CAS  Google Scholar 

  24. Li LG, Tang HW, Wu HX, Lu GH, Yang XN. Effects of fullerene solubility on the crystallization of poly(3-hexylthiophene) and performance of photovoltaic devices. Org Electron, 2009, 10: 1334–1344

    Article  CAS  Google Scholar 

  25. Biniek L, Chochos CL, Leclerc N, Hadziioannou G, Kallitsis JK, Bechara R, Leveque P, Heiser T. A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: Design, synthesis, material characterization and device performances. J Mater Chem, 2009, 19: 4946–4951

    Article  CAS  Google Scholar 

  26. Cao J, Kampf JW, Curtis MD. Synthesis and characterization of bis (3,4-ethylene-dioxythiophene)-(4,4′-dialkyl-2,2′-bithiazole) co-oligomers for electronic applications. Chem Mater, 2003, 15: 404–411

    Article  CAS  Google Scholar 

  27. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317: 222–225

    Article  CAS  Google Scholar 

  28. Li K, Qu JL, Xu B, Zhou YH, Liu LJ, Peng P, Tian WJ. Synthesis and photovoltaic properties of novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores. New J Chem, 2009, 33: 2120–2127

    Article  CAS  Google Scholar 

  29. Hellstrom S, Zhang FL, Inganas O, Andersson MR. Structure-property relationships of small bandgap conjugated polymers for solar cells. Dalton Trans, 2009, 45: 10032–10039

    Article  Google Scholar 

  30. Holcombe TW, Woo CH, Kavulak DFJ, Thompson BC, Frechet JMJ. All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) polymerization. J Am Chem Soc, 2009, 131: 14160–14161

    Article  CAS  Google Scholar 

  31. Koetse MM, Sweelssen J, Hoekerd KT, Schoo HFM, Veenstra SC, Kroon JM, Yang XN, Loos J. Efficient polymer: Polymer bulk heterojunction solar cells. Appl Phys Lett, 2006, 88: 083504

    Article  Google Scholar 

  32. Sang GY, Zou YP, Huang Y, Zhao GJ, Yang Y, Li YF. All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazinevinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Appl Phys Lett, 2009, 94: 193302

    Article  Google Scholar 

  33. Xia YJ, Luo J, Deng XY, Li XZ, Li DY, Zhu XH, Yang W, Cao Y. Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light-emitting diodes and bulk heterojunction photovoltaic cells. Macromol Chem Phys, 2006, 207: 511–520

    Article  CAS  Google Scholar 

  34. Samuel IDW, Rumbles G, Collison CJ. Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer. Phys Rev B, 1995, 52: 11573–11576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongSheng Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Liu, Y., Wan, X. et al. Synthesis and properties of copolymers based on 5,6-dinitrobenzothiadiazole with low band gap and broad absorption spectra. Sci. China Chem. 54, 617–624 (2011). https://doi.org/10.1007/s11426-011-4244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4244-8

Keywords

Navigation