Skip to main content
Log in

Ultrasound responsive organogels based on cholesterol-appended quinacridone derivatives with mechanochromic behaviors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of cholesterol-appended quinacridone (QA) derivatives 1a1d have been synthesized, in which 1b and 1c could form stable organogels in a wide range of organic solvents upon ultrasound irradiation. Field emission scanning electronic microscope (FESEM) and transmission electron microscopy (TEM) of xerogels or precipitates indicated that 1b and 1c formed 1D fibrous nanostructure, while 1a assembled into 3D flower-like microstructures. The ultrasound-induced organogel process was characterized by kinetic UV-vis and photoluminescence spectroscopic methods suggesting the formation of π-π aggregates in the gel state. Experimental results demonstrated that the ultrasound could promote molecules to contact frequently in the solution and induce semistable initial aggregates, which propagate to form nano/micro superstructures. The aggregation model was optimized by semiempirical AM1 calculation suggesting the hierarchical self-assembly process. In addition, the formed xerogel film exhibited mechanochromic property, and the phase transition process was accompanied by the fluorescence changes between yellowish green and orange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong L, Agarwal AK, Beebe DJ, Jiang HR. Adaptive liquid microlenses activated by stimuli responsive hydrogels. Nature, 2006, 442: 551–555

    Article  CAS  Google Scholar 

  2. Bellomo EG, Wyrsta MD, Pekstis LD, Pochan J, Deming TJ. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater, 2004, 3: 244–249

    Article  CAS  Google Scholar 

  3. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ. About Supramolecular assemblies of π-conjugated systems. Chem Rev, 2005, 105: 1491–1546

    Article  CAS  Google Scholar 

  4. Van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed, 2003, 42: 980–999

    Article  Google Scholar 

  5. Rieth S, Baddeley C, Badjic JD. Prospects in controlling morphology, dynamics and responsiveness of supramolecular polymers. Soft Matter, 2007, 3: 137–154

    Article  CAS  Google Scholar 

  6. Weiss RG, Terech PE. Molecular Gels. Materials with Self-Assembled Fibrillar Networks. Dordrecht: Springer, 2005

    Google Scholar 

  7. Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev, 2004, 104: 1201–1217

    Article  CAS  Google Scholar 

  8. Abdallah DJ, Weiss RG. Organogels and low molecular mass organic gelators. Adv Mater, 2000, 12: 1237–1247

    Article  CAS  Google Scholar 

  9. Kishimura A, Yamashita T, Aida T. Phosphorescent organogels via “metallophilic” interactions for reversible RGB-color switching. J Am Chem Soc, 2005, 127: 179–183

    Article  CAS  Google Scholar 

  10. Moon KS, Kim HJ, Lee E, Lee M. Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew Chem Int Ed, 2007, 46: 6807–6810

    Article  CAS  Google Scholar 

  11. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M. Control of viscoelasticity using redox reaction. J Am Chem Soc, 2004, 126: 12282–12283

    Article  CAS  Google Scholar 

  12. Ulijn RV. Enzyme-responsive materials: A new class of smart biomaterials. J Mater Chem, 2006, 16: 2217–2225

    Article  CAS  Google Scholar 

  13. Dautel OJ, Robitzer M, Lère-Porte JP, Serein-Spirau F, Moreau JJE. Self-organized ureido substituted diacetylenic organogel. Photopolymerization of one-dimensional supramolecular assemblies to give conjugated nanofibers. J Am Chem Soc, 2006, 128: 16213–16223

    CAS  Google Scholar 

  14. Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew Chem Int Ed, 2003, 42: 3218–3235

    Article  CAS  Google Scholar 

  15. Price GJ, Ashokkumar M, Grieser F. Sonoluminescence quenching of organic compounds in aqueous solution: Frequency effects and implications for sonochemistry. J Am Chem Soc, 2004, 126: 2755–2762

    Article  CAS  Google Scholar 

  16. Naota T, Koori H. Molecules that assemble by sound: An application to the instant gelation of stable organic fluids. J Am Chem Soc, 2005, 127: 9324–9325

    Article  CAS  Google Scholar 

  17. Isozaki K, Takaya H, Naota T. Ultrasound-induced gelation of organic fluids with metalated peptides. Angew Chem Int Ed, 2007, 46: 2855–2857

    Article  CAS  Google Scholar 

  18. Paulusse JMJ, van Beek DJM, Sijbesma RP. Reversible switching of the sol-gel transition with ultrasound in Rhodium(I) and Iridium(I) coordination networks. J Am Chem. Soc, 2007, 129: 2392–2397

    Article  CAS  Google Scholar 

  19. Weng WG, Benjamin Beck J, Jamieson AM, Rowan SJ. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J Am Chem Soc, 2006, 128: 11663–11672

    Article  CAS  Google Scholar 

  20. Wu JC, Yi T, Shu TM, Yu MX, Zhou ZG, Xu M, Zhou YF, Zhang HJ, Han JT, Li FY, Huang CH. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system. Angew Chem Int Ed, 2007, 47: 1063–1067

    Article  Google Scholar 

  21. Bardelang D, Camerel F, Margeson JC, Leek DM, Schmutz M, Badruz Zaman M, Yu K, Soldatov DV, Ziessel R, Ratcliffe CI, Ripmeester JA. Unusual sculpting of dipeptide particles by ultrasound induces gelation. J Am Chem Soc, 2008, 130: 3313–3315

    Article  CAS  Google Scholar 

  22. Paulusse JMJJ, Huijbers PJ, Sijbesma RP. Quantification of ultrasound-induced chain scission in Pd(II)-Phosphine coordination polymers. Chem Eur J, 2006, 12: 4928–4934

    Article  CAS  Google Scholar 

  23. George M, Weiss RG. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res, 2006, 39: 489–497

    CAS  Google Scholar 

  24. Ajayaghosh A, Vijayakumar C, Varghese R, George SJ. Cholesterol-aided supramolecular control over chromophore packing: Twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew Chem Int Ed, 2006, 45: 456–460

    Article  CAS  Google Scholar 

  25. Wang R, Geiger C, Chen LH, Swanson B, Whitten DG. Direct observation of sol-gel conversion: The role of the solvent in organogel formation. J Am Chem Soc, 2000, 122: 2399–2400

    Article  CAS  Google Scholar 

  26. Ajay Mallia V, Tamaoki N. Design of chiral dimesogens containing cholesteryl groups: Formation of new molecular organizations and their application to molecular photonics. Chem Soc Rev, 2004, 33: 76–84

    Article  Google Scholar 

  27. Lin Y, Kachar B, Weiss RG. Novel family of gelators of organic fluids and the structure of their gels. J Am Chem Soc, 1989, 111: 5542–5551

    Article  CAS  Google Scholar 

  28. Huang X, Raghavan SR, Terech P, Weiss RG. Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties. J Am Chem Soc, 2006, 128: 15341–15352

    Article  CAS  Google Scholar 

  29. Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komri T, Ohseto F, Ueda K, Shinkai S. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J Am Chem Soc, 1994, 116: 6664–6676

    Article  CAS  Google Scholar 

  30. Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angew Chem Int Ed, 2004, 43: 1229–1233

    Article  CAS  Google Scholar 

  31. Hiramoto M, Kawase S, Yokoyama M. Photoinduced hole injection multiplication in p-type quinacridone pigment films. Jpn J Appl Phys, 1996, 35: L349–L351

    Article  CAS  Google Scholar 

  32. Shi J, Tang CW. Low threshold self-starting operation of an additive-pulse mode-locked, diode-pumped Nd:YLF laser. Appl Phys Lett, 1997, 70: 1665–1667

    Article  CAS  Google Scholar 

  33. Gross EM, Anderson JD, Slaterbeck AF, Thayumanavan S, Barlow S, Zhang Y, Marder SR, Hall HK, Nabor MF, Wang JF, Mask EA, Armstrong NR, Wightman RM. Electrogenerated chemiluminescence from derivatives of aluminum quinolate and quinacridones: Crossreactions with triarylamines lead to singlet emission through triplet triplet annihilation pathways. J Am Chem Soc, 2000, 122: 4972–4970

    Article  CAS  Google Scholar 

  34. Keller U, Müllen K, De Feyter S, De Schryver FC. Hydrogen-bonding and phase-forming behavior of a soluble quinacridone. Adv Mater, 1996, 8: 490–493

    Article  CAS  Google Scholar 

  35. De Feyter S, Gesquière A, De Schryver FC, Keller U, Müllen K. Aggregation properties of soluble quinacridones in two and three dimensions. Chem Mater, 2002, 14: 989–997

    Article  Google Scholar 

  36. Trixler F, Markert T, Lackinger M, Jamitzky F, Heckl WM. Supramolecular self-assembly initiated by solid wetting. Chem Eur J, 2007, 13, 7785–7790

    Article  CAS  Google Scholar 

  37. Yang XY, Mu ZC, Wang ZQ, Zhang X, Wang J, Wang Y. STM study on quinacridone derivative assemblies: Modulation of the two-dimensional structure by coadsorption with dicarboxylicacids. Langmuir, 2005, 21, 7225–7229

    Article  CAS  Google Scholar 

  38. Lin F, Zhong DY, Chi LF, Ye KQ, Wang Y, Fuchs H. Temperature-tuned organic monolayer growth: N,N-Di(n-butyl)quinacridone on Ag(110). Phys Rev B, 2006, 73: 235420–235427

    Article  Google Scholar 

  39. Wang J, Zhao YF, Zhang JH, Zhang JY, Yang B, Wang Y, Zhang DK, You H, Ma DG. Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives. J Phys Chem C, 2007, 111: 9177–9183

    Article  CAS  Google Scholar 

  40. Dou CD, Li D, Gao HZ, Wang CY, Zhang HY, Wang Y. Sonication-induced molecular gels based on mono-cholesterol substituted quinacridone derivatives. Langmuir, 2010, 26: 2113–2118

    Article  CAS  Google Scholar 

  41. van Esch JH, Feringa BL. New functional materials based on self-assembling organogels: From serendipity towards design. Angew Chem Int Ed, 2000, 39: 2263–2266

    Article  Google Scholar 

  42. Lewis FD, Wu T, Burch EL, Bassani DM, Yang JS, Schneider S, Jäger W, Letsinger R. Hybrid oligonucleotides containing stilbene units. Excimer fluorescence and photodimerization. J Am Chem Soc, 1995, 117: 8785–8792

    Article  CAS  Google Scholar 

  43. Kobayashi T. J-Aggregates. World Scientific Publishing (Singapore), 1996, p.98

  44. Würthner F, Bauer C, Stepanenko V, Yagai S. A black perylene bisimide super gelator with an unexpected J-type absorption band. Adv Mater, 2008, 20: 1695–1698

    Article  Google Scholar 

  45. Seibt J, Marquetand P, Engel V, Chen Z, Dehm V, Würthner F. On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide. Chem Phys, 2006, 328: 354–362

    Article  CAS  Google Scholar 

  46. Yagai S, Seki T, Karatsu T, Kitamura A, Würthner F. Transformation from H- to J-aggregated perylene bisimide dyes by complexation with cyanurates. Angew Chem Int Ed, 2008, 47: 3367–3371

    Article  CAS  Google Scholar 

  47. Percec V, Ungar G, Peterca M. Self-assembly in action. Science, 2006, 313: 55–56

    Article  Google Scholar 

  48. Jonkheijm P, van der Schoot P, Schenning APHJ, Meijer EW. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science, 2006, 313: 80–83

    Article  CAS  Google Scholar 

  49. Würthner F, Hanke B, Lysetska M, Lambright G, Harms GS. Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. Org Lett, 2005, 7: 967–970

    Article  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC. Gaussian 03, Revision C.02. Pittsburgh: Gaussian Inc., 2003

    Google Scholar 

  51. Engelkamp H, Middelbeek S, Nolte RJM. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science, 1999, 284: 785–788

    Article  CAS  Google Scholar 

  52. Ajayaghosh A, Praveen AK. π-Organogels of self-assembled p-phenylenevinylenes: Soft materials with distinct size, shape, and functions. Acc Chem Res, 2007, 40, 644–656

    Article  CAS  Google Scholar 

  53. Keizer HM, Sijbesma RP. Hierarchical self-assembly of columnar aggregates. Chem Soc Rev, 2005, 34: 226–234

    Article  CAS  Google Scholar 

  54. Balch AL. Dynamic crystals: Visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew Chem Int Ed, 2009, 48: 2641–2644

    Article  CAS  Google Scholar 

  55. Sagara Y, Mutai T, Yoshikawa I, Araki K. Material design for piezochromic luminescence: Hydrogen-bond-directed assemblies of a pyrene derivative. J Am Chem Soc, 2007, 129: 1520–1521

    Article  CAS  Google Scholar 

  56. Ooyama Y, Kagawa Y, Fukuoka H, Ito G, Harima Y. Mechan-ofluorochromism of a series of benzofuro[2,3-c]oxazolo[4,5-a]-carbazole-type fluorescent dyes. Eur J Org Chem, 2009, 5321–5326

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JingYing Zhang or Yue Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, C., Li, D., Zhang, H. et al. Ultrasound responsive organogels based on cholesterol-appended quinacridone derivatives with mechanochromic behaviors. Sci. China Chem. 54, 641–650 (2011). https://doi.org/10.1007/s11426-011-4236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4236-8

Keywords

Navigation