Skip to main content
Log in

A new pseudo rubrene analogue with excellent film forming ability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel pseudo rubrene analogue, 6,11-di(thiophen-2-yl)-tetracene-5,12-dione (DTTDO) was synthesized, in which two thienyl groups and two carbonyl groups replacing four phenyl groups in the rubrene molecule were connected to the backbone of tetracene. This compound was characterized by single crystal X-ray structure analysis, thermogravimetric analysis, absorption spectra and electrochemical measurements. Unlike rubrene, DTTDO exhibited excellent film forming ability by normal vacuum deposition, indicating its promising applications in organic thin film transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39: 2643

    Article  CAS  Google Scholar 

  2. Dong HL, Wang CL, Hu WP. High performance organic semiconductors for field-effect transistors. Chem Commun, 2010, 46: 5211–5222

    Article  CAS  Google Scholar 

  3. Jiang L, Dong HL, Hu WP. Organic single crystal field-effect transistors: Advances and perspectives. J Mater Chem, 2010, 20: 4994–5007

    Article  CAS  Google Scholar 

  4. Seo S, Park BN, Evans PG. Ambipolar rubrene thin-film transistors. Appl Phys Lett, 2006, 88: 232114

    Article  Google Scholar 

  5. de Boer RWI, Gershenson ME, Morpurgo AF, Podzorov V. Organic single-crystal field-effect transistors. Phys Status Solid A, 2004, 201: 1302

    Article  Google Scholar 

  6. da Silva DA, Kim EG, Bredas JL. Transport properties in the rubrene crystal: Electronic coupling and vibrational reorganization energy. Adv Mater, 2005, 17: 1072–1076

    Article  Google Scholar 

  7. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson ME, Rogers JA. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science, 2004, 303: 1644–1646

    Article  CAS  Google Scholar 

  8. Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett, 2007, 90: 102120

    Article  Google Scholar 

  9. Hsu CH, Deng J, Staddon CR, Beton PH. Growth front nucleation of rubrene thin films for high mobility organic transistors. Appl Phys Lett, 2007, 91: 193505

    Article  Google Scholar 

  10. Park SW, Jeong SH, Choi JM, Hwang JM, Kim JH, Ima S. Rubrene polycrystalline transistor channel achived through in situ vacuum annealing. Appl Phys Lett, 2007, 91: 033506

    Article  Google Scholar 

  11. Chena Y, Shih I. High mobility organic thin films transistors based on monocrystalline rubrene films grown by low pressure hot wall deposition. Appl Phys Lett, 2009, 94: 083304

    Article  Google Scholar 

  12. Campione M. Rubrene heteroepitaxial nanostructures with unique orientation. J Phys Chem C, 2008, 112, 16178-16181

    Google Scholar 

  13. Seo JH, Park DS, Cho SW, Kim CY, Jang WC, Whang CN, Yoo KH, Chang GS, Pedersen T, Moewes A, Chae KH, Cho SJ. Buffer layer effect on the structural and electrical properties of rubrene-based organic thin-film transistors. Appl Phys Lett, 2006, 89: 163505

    Article  Google Scholar 

  14. Choi JM, Jeong SH, Hwang DK, Im S, Lee BH, Sung MM. Rubrene thin-film transistors with crystalline channels achievedon optimally modified dielectric surface. Org Electron, 2009, 10: 199–204

    Article  CAS  Google Scholar 

  15. Li Z, Du J, Tang Q, Wang F, Xu JB, Yu JC, Miao Q. Induced crystallization of rubrene in thin-film transistors. Adv Mater, 2010, 22: 3242–3246

    Article  CAS  Google Scholar 

  16. Zeng XH, Wang LD, Duan L, Qiu Y. Homoepitaxy growth of wellordered rubrene thin films. Cryst Growth Des, 2008, 8: 1617–1622

    Article  CAS  Google Scholar 

  17. Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, Smith P, De Leeuw D. Organic thin-film electronics fromvitreous solution-processed rubrene hypereutectics. Nat Mater, 2005, 4: 601–606

    Article  CAS  Google Scholar 

  18. Chi XL, Li DW, Zhang HQ, Chen YS, Garcia V, Garcia C, Siegrist T. 5,6,11,12-Tetrachlorotetracene, a tetracene derivative with pi-stacking structure: The synthesis, crystal structure and transistor properties. Org Electron, 2008, 9: 234–240

    Article  CAS  Google Scholar 

  19. Hou YH, Chi XL, Wan XJ, Chen YS. Synthesis and crystal structure of 5,12-diphenyl-6,11-bis(thien-2-yl)tetracene. J Mol Struct, 2008, 889: 265–270

    Article  CAS  Google Scholar 

  20. Hauser C R, Tetenbaum MT, Hoffenberg DS. Condensations involving the metalation of the 3-position of 3-phenylphthalide by means of alkali amides — carbonation of phthalide. J Org Chem, 1958, 23: 861–865

    Article  CAS  Google Scholar 

  21. Mohanakrishnan AK, Lakshmikantham MV, McDougal CM, Cava P, Baldwin JW, Metzger RM. Studies in the dithienylbenzo[c]thiophene series. J Org Chem, 1998, 63: 3105–3112

    Article  CAS  Google Scholar 

  22. Amaladass P, Clement JA, Mohanakrishnan AK. Synthesis and characterization of benzannelated thienyl oligomers. Eur J Org Chem, 2008: 3798-3810

  23. Mohanakrishnan AK, Amaladass P. Synthesis of 1,3-diaryl benzo [c]thiophenes. Tetrahedron Lett, 2005, 46: 4225–4229

    Article  CAS  Google Scholar 

  24. Amaladass P, Kumar NS, Mohanakrishnan AK. Synthesis and characterization of 1,3-diarylbenzo[c]selenophenes. Tetrahedon, 2008, 64: 7992–7998

    Article  CAS  Google Scholar 

  25. Song J, Wang J, Xu N. Preparation of a new derivate of rubrene. China patent, 200710037118.1, 2007-02-02

  26. Dodge JA, Bain J, Chamberlin AR. Regioselective synthesis of substituted rubrenes. J Org Chem, 1990, 55: 4190–4198

    Article  CAS  Google Scholar 

  27. Irwin C, Lewis ET. Thermal reactivity of polynuclear aromatic hydrocarbons. J Org Chem, 1963, 28: 2050–2057

    Article  Google Scholar 

  28. Keszthelyi, Csaba P, Bard. Allen J. Electrogenerated chemiluminescence. XIX. Preparation and chemiluminescence of 5,12-dibromo-5,12-dihydro-5,6,11,12-tetraphenylnaphthacenel. J Org Chem, 1974, 39: 2936–2937

    Article  CAS  Google Scholar 

  29. Hsu CH, Deng J, Staddon CR, Beton PH. Growth front nucleation of rubrene thin films for high mobility organic transistors. Appl Phys Lett, 2007, 91: 193505

    Article  Google Scholar 

  30. Park B, In I, Gopalan P, Evans PG, King S, Lyman PF. Enhanced hole mobility in ambipolar rubrene thin film transistors on polystyrene. Appl Phys Lett, 2009, 92: 133302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HuanLi Dong or WenPing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Meng, Q., He, Y. et al. A new pseudo rubrene analogue with excellent film forming ability. Sci. China Chem. 54, 631–635 (2011). https://doi.org/10.1007/s11426-011-4234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4234-x

Keywords

Navigation