Skip to main content
Log in

Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The effects of chenodeoxycholic acid (CDCA) in a dye solution as a co-adsorbent on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on two organic dyes containing phenothiazine and triarylamine segments (P1 and P2) were investigated. It was found that the coadsorption of CDCA can hinder the formation of dye aggregates and improve electron injection yield and thus J sc. This has also led to a rise in photovoltage, which is attributed to the decrease of charge recombination. The DSSC based on dye P2 showed better photovoltaic performance than P1: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 89.5%, a short-circuit photocurrent density (J sc) of 9.57 mA/cm2, an open-circuit photovoltage (V oc) of 697 mV, and a fill factor (FF) of 0.66, corresponding to an overall conversion efficiency of 4.42% under the standard global AM 1.5 solar light condition. The overall conversion efficiency was further improved to 5.31% (J sc = 10.36 mA/cm2, V oc = 0.730 V, FF = 0.70) upon addition of 10 mM CDCA to the dye solution for TiO2 sensitization. Electrochemical impedance data indicate that the electron lifetime was improved by coadsorption of CDCA, accounting for the significant improvement of V oc. These results suggest that interfacial engineering of the organic dye-sensitized TiO2 electrodes is important for highly efficient photovoltaic performance of the solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  2. Ardo S, Meyer GJ. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev, 2009, 38(1): 115–164

    Article  CAS  Google Scholar 

  3. Hagfeldt A, Gräetzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95(1): 49–68

    Article  CAS  Google Scholar 

  4. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Dyesensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys, 2006, 45: L638

    Article  CAS  Google Scholar 

  5. Nazeeruddin MK, Pechy P, Grätzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem Comm, 1997, 18: 1705–1706

    Article  Google Scholar 

  6. Kuang D, Klein C, Ito S, Moser JE, Humphry-Baker R, Evans N. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater, 2007, 19(8): 1133–1137

    Article  CAS  Google Scholar 

  7. Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer CH, Grätzel M. Acid-base equilibria of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg Chem, 1999, 38(26): 6298–6305

    Article  CAS  Google Scholar 

  8. Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Grätzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J Am Chem Soc, 2004, 127(3): 808–809

    Article  Google Scholar 

  9. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem Comm, 2001, (6): 569–570

    Article  Google Scholar 

  10. Wang ZS, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. J Phys Chem C, 2007, 111(19): 7224–7230

    Article  CAS  Google Scholar 

  11. Wang ZS, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. J Phys Chem C, 2008, 112(43): 17011–17017

    Article  CAS  Google Scholar 

  12. Sarfati M, Courtieu J, Lesot P. First successful enantiomeric discrimination of chiral alkanes using NMR spectroscopy. Chem Comm, 2000, (13): 1113–1114

    Article  Google Scholar 

  13. Wu WJ, Hua JL, Jin YH, Zhan WH, Tian H. Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells. Photochem Photobiol Sci, 2008, 7(1): 63–68

    Article  CAS  Google Scholar 

  14. Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dyesensitized solar cells based on metal-free indoline dyes. J Am Chem Soc, 2004, 126(39): 12218–12219

    Article  CAS  Google Scholar 

  15. Liu B, Zhu WH, Zhang Q, Wu WJ, Xu M, Ning ZJ, Tian H. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: Tuning photovoltaic performance by structural modification of donor group in donor-π-acceptor system. Chem Comm, 2009, (13): 1766–1768

    Article  Google Scholar 

  16. Marinado T, Hagberg DP, Hedlund M, Edvinsson T, Johansson EMJ, Boschloo G, Rensmo H, Brinck T, Sun LC, Hagfeldt A. Rhodanine dyes for dye-sensitized solar cells: Spectroscopy, energy levels and photovoltaic performance. Phys Chem Chem Phys, 2009, 11(1): 133–141

    Article  CAS  Google Scholar 

  17. Hara K, Sato T, Katoh R, Furube A, Yoshihara T, Murai M, Kurashige M, Ito S, Shinpo A, Suga S, Arakawa H. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv Func Mater, 2005, 15(2): 246–252

    Article  CAS  Google Scholar 

  18. Wang ZS, Li FY, Huang CH. Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate. Chem Comm, 2000(20): 2063–2064

    Article  Google Scholar 

  19. Yao QH, Meng FS, Li FY, Tian H, Huang CH. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode. J Mater Chem, 2003, 13(5): 1048–1053

    Article  CAS  Google Scholar 

  20. Kim D, Lee JK, Kang SO, Ko J. Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell. Tetrahedron, 2007, 63(9): 1913–1922

    Article  CAS  Google Scholar 

  21. Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M. Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc, 2006, 128(51): 16701–16707

    Article  CAS  Google Scholar 

  22. Choi H, Lee JK, Song K, Kang SO, Ko J. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 2007, 63(15): 3115–3121

    Article  CAS  Google Scholar 

  23. Teng C, Yang XC, Yang C, Li SF, Cheng M, Hagfeldt S, Sun LC. Molecular design of anthracene-bridged metal-free organic dyes for efficient dye-sensitized solar cells. J Phys Chem C, 2010, 114(19): 9101–9110

    Article  CAS  Google Scholar 

  24. Song JS, Zhang F, Li CH, Liu WL, Li BS, Huang BS, Bo ZS. Phenylethyne-bridged dyes for dye-sensitized solar cells. J Phys Chem C, 2009, 113: 13391–13397

    Article  CAS  Google Scholar 

  25. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem Mater, 2004, 16(9): 1806–1812

    Article  CAS  Google Scholar 

  26. Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L. Design of an organic chromophore for P-type dye-sensitized solar cells. J Am Chem Soc, 2008, 130(27): 8570–8571

    Article  CAS  Google Scholar 

  27. Tian H, Yang X, Pan J, Chen R, Liu M, Zhang Q, Hagfeldt A, Sun LC. A triphenylamine dye model for the study of intramolecular energy transfer and charge transfer in dye-sensitized solar cells. Adv Func Mater, 2008, 18(21): 3461–3468

    Article  CAS  Google Scholar 

  28. Velusamy M, Justin Thomas KR, Lin JT, Hsu Y-C, Ho K-C. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org Lett, 2005, 7(10): 1899–1902

    Article  CAS  Google Scholar 

  29. Alibabaei L, Kim JH, Wang M, Pootrakulchote N, Teuscher J, Censo DD, Humphry BR, Moser JE, Yu YJ, Kay KY, Zakeeruddin SM, Grtzel M. Molecular design of metal-free D-π-A substituted sensitizers for dye-sensitized solar cells. Energy Environ Sci, 2010, 11(3): 1757–1764

    Article  Google Scholar 

  30. Qu SY, Wu WJ, Hua JL, Kong C, Long YT, Tian H. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. J Phys Chem C, 2010, 114(2): 1343–1349

    Article  CAS  Google Scholar 

  31. Zeng WD, Cao YM, Bai Y, Wang YH, Shi YS, Zhang M, Wang FF, Pan CY, Wang P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater, 2010, 22(5): 1915–1925

    Article  CAS  Google Scholar 

  32. Wu WJ, Yang JB, Hua JL, Tang J, Zhang L, Long YT. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. J Mater Chem, 2010, 20(9): 1772–1779

    Article  CAS  Google Scholar 

  33. Chen R, Yang X, Tian H, Sun LC. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. J Photochem Photobio A, 2007, 189(2–3): 295–300

    Article  CAS  Google Scholar 

  34. Kay A, Gräetzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem, 1993, 97(23): 6272–6277

    Article  CAS  Google Scholar 

  35. Wang P, Zakeeruddin SM, Comte P, Charvet R, Humphry-Baker R, Grätzel M. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B, 2003, 107(51): 14336–14341

    Article  CAS  Google Scholar 

  36. Wang P, Zakeeruddin S, Humphry-Baker R, Moser J, Grätzel M. Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells. Adv Mater, 2003, 15(24): 2101–2104

    Article  CAS  Google Scholar 

  37. Wang P, Zakeeruddin SM, Humphry-Baker R, Grätzel M. A Binary ionic liquid electrolyte to achieve ⩾7% power conversion efficiencies in dye-sensitized solar cells. Chem Mater, 2004, 16(14): 2694–2696

    Article  CAS  Google Scholar 

  38. He J, Benkö G, Korodi F, Polívka T, Lomoth R, Åkermark B, Sun LC, Hagfeldt A, Sundstrm V. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode. J Am Chem Soc, 2002, 124(17): 4922–4932

    Article  CAS  Google Scholar 

  39. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35(5): 1168–1178

    Article  CAS  Google Scholar 

  40. Xu W, Peng B, Chen J, Liang M, Cai F. New triphenylamine-based dyes for dye-sensitized solar cells. J Phys Chem C, 2008, 112: 874–880

    Article  CAS  Google Scholar 

  41. Hagberg DP, Yum J-H, Lee H, Angelis DF, Marinado T, Karlsson KM, Humphry-Baker R, Sun LC, Hagfeldt A, Grätzel M, Nazeeruddin M K. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J Am Chem Soc, 2008, 130: 6259–6266

    Article  CAS  Google Scholar 

  42. Wang ZS, Hara K, Danoh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H. Photophysical and (photo)electrochemical properties of a coumarin dye. J Phys Chem B, 2005, 109: 3907–3914

    Article  CAS  Google Scholar 

  43. Yum JH, Moon SJ, Humphry-Baker R, Walter P, Geiger T, Nuesch F, Graetzel M, Nazeeruddi MK. Effect of coadsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells. Nanotechnology, 2008, 19: 424005

    Article  Google Scholar 

  44. Guo M, Diao P, Ren YJ, Meng FS, Tian H, Cai SM. Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Sol Energy Mater Sol Cells, 2005, 88(1): 23–35

    Article  CAS  Google Scholar 

  45. Khazraji AC, Hotchandani S, Das S, Kamat PV. Controlling dye (merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. J Phys Chem B, 1999, 103(22): 4693–4700

    CAS  Google Scholar 

  46. Lee KM, Wu SJ, Chen CY, Wu CG, Ikegami M, Miyoshi K, Miyasaka, Tsutomu, Ho, Kuo-Chuan. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J Mater Chem, 2009, 19(28): 5009–5015

    Article  CAS  Google Scholar 

  47. Neale NR, Kopidakis N, Lagemaat J, Grätzel M, Frank AJ. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement. J Phys Chem B, 2005, 109(49): 23183–23189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianLi Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wu, W., Yang, J. et al. Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance. Sci. China Chem. 54, 699–706 (2011). https://doi.org/10.1007/s11426-011-4227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4227-9

Keywords

Navigation