Skip to main content
Log in

Preparation of microtubular solid oxide fuel cells based on highly asymmetric structured electrolyte hollow fibers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A simple and cost-effective method has been developed for the fabrication of microtubular solid oxide fuel cells (MT-SOFCs). Highly asymmetric electrolyte hollow fibers composed of a thin dense skin layer and a thick porous substrate are first prepared by a modified phase inversion/sintering technique. The porous substrate is then formed into the anode by deposition of a Ni catalyst via an electroless plating method inside the pores while the thin dense skin layer serves directly as the electrolyte film of the fuel cells. A porous cathode layer is produced on the outer surface of the Ni-deposited hollow fibers by slurry coating and subsequent sintering to form a complete micro tubular fuel cell. The process has been employed to fabricate yttrium stabilized zirconia (YSZ) supported Ni-YSZ|YSZ|La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) microtubular fuel cells. The maximum output of the resulting cells is 159.6 mW cm−2 at 800 °C when using H2 as the fuel feed and air as the oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawlor V, Griesser S, Buchinger G, Olabib AG, Cordiner S. Meissner D. Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities. J Power Sources, 2009, 193: 387–399

    Article  CAS  Google Scholar 

  2. Suzuki T, Yamaguchi T, Fujishiro Y, Awano M. Improvement of SOFC performance using a microtubular anode-supported SOFC. J Electrochem. Soc, 2006, 153: A925–928

    Article  CAS  Google Scholar 

  3. Suzuki T, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. J Power Sources, 2006, 160: 73–77

    Article  CAS  Google Scholar 

  4. Funahashi Y, Shimamori T, Suzuki T, Fujishiro Y, Awano M. Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. J Power Sources, 2007, 163: 731–736

    Article  CAS  Google Scholar 

  5. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Anode-supported micro tubular SOFCs for advanced ceramic reactor system. J Power Sources, 2007, 171: 92–95

    Article  CAS  Google Scholar 

  6. Pusz J, Smirnova A, Mohammadi A, Sammes NM. Fracture strength of micro-tubular solid oxide fuel cell anode in redox cycling experiments. J Power Sources, 2007, 163: 900–906

    Article  CAS  Google Scholar 

  7. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Development of cube-type SOFC stacks using anode-supported tubular cells. J Power Sources, 2008, 175: 68–74

    Article  CAS  Google Scholar 

  8. Lee TJ, Kendall K. Characterisation of electrical performance of anode supported micro-tubular solid oxide fuel cell with methane fuel. J Power Sources, 2008, 181: 195–198

    Article  CAS  Google Scholar 

  9. Suzuk T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Effect of anode microstructure on the performance of micro tubular SOFCs. Solid State Ionics, 2008, 180: 546–549

    Article  Google Scholar 

  10. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors. J Alloys & Compd, 2008, 451: 632–635

    Article  CAS  Google Scholar 

  11. Suzuki T, Funahashi Y, Hasan Z, Yamaguchi T, Fujishiro Y, Awano M. Fabrication of needle-type micro SOFCs for micro power devices. Electrochem Commun, 2008, 10: 1563–1566

    Article  CAS  Google Scholar 

  12. Calise F, Restucccia G, Sammes N. Experimental analysis of micro-tubular solid oxide fuel cell fed by hydrogen. J Power Sources, 2010, 195: 1163–1170

    Article  CAS  Google Scholar 

  13. Liu Y, Hashimoto S, Nishino H, Takei K, Mori M, Suzuki T, Funahashi Y. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation. J Power Sources, 2007, 174: 95–102

    Article  CAS  Google Scholar 

  14. Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M. Fabrication and evaluation of cathode-supported small scale SOFCs. Materials Lett, 2008, 62: 1518–1520

    Article  CAS  Google Scholar 

  15. Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awano M. Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation. Electrochem Commun, 2008, 10: 1381–1383

    Article  CAS  Google Scholar 

  16. Luebbe H, Herle JV, Hofmann H, Bowen P, Aschauer U, Schuler A, Snijkers F, Schindler HJ, Vogt U, Lalanne C. Cathode-supported micro-tubular SOFCs based on Nd1.95NiO4+δ : Fabrication and characterisation of dip-coated electrolyte layers. Solid State Ionics, 2009, 180: 805–811

    Article  CAS  Google Scholar 

  17. Yamaguchi T, Suzuki T, Shimizu S, Fujishiro Y, Awano M. Examination of wet coating and co-sintering technologies for micro-SOFCs fabrication. J Membr Sci, 2007, 300: 45–50

    Article  CAS  Google Scholar 

  18. Saunders GJ, Kendall K. Reactions of hydrocarbons in small tubular SOFC. J Power Sources, 2002, 106: 258–263

    Article  CAS  Google Scholar 

  19. Mallon C, Kendall K. Sensitivity of nickel cermet anodes to reduction conditions. J Power Sources, 2005, 145: 154–160

    Article  CAS  Google Scholar 

  20. Tan X, Liu S, Li K. Preparation and characterization of inorganic hollow fibre membranes. J Membr Sci, 2001, 188: 87–95

    Article  CAS  Google Scholar 

  21. Tan X, Liu Y, Li K. Preparation of LSCF ceramic hollow fiber membranes for oxygen production by a phase-inversion/sintering technique. Ind Eng Chem Res, 2005, 44: 61–66

    Article  CAS  Google Scholar 

  22. Liu L, Tan X, Liu S. Yttria stabilized zirconia hollow fiber membranes. J Am Ceram Soc, 2006, 89: 1156–1159

    Article  CAS  Google Scholar 

  23. Yang N, Tan X, Ma ZF. A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. J Power Sources, 2008, 183: 14–19

    Article  CAS  Google Scholar 

  24. Yin W, Meng B, Meng X, Tan X. Highly asymmetric YSZ hollow fibre membranes. J Alloys & Compd, 2009, 476: 566–570

    Article  CAS  Google Scholar 

  25. Wang Z, Yang N, Meng B, Tan X. Preparation and oxygen permeation properties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3−α (LSCF) perovskite hollow fibre membranes. Ind Eng Chem Res, 2009, 48: 510–516

    Article  CAS  Google Scholar 

  26. Gorte RJ, Vohs JM. Nanostructured anodes for solid oxide fuel cells. Current Opinion in Colloid Interface Sci, 2009, 14: 236–244

    Article  CAS  Google Scholar 

  27. Busawon AN, Sarantaridis D, Atkinson A. Ni infiltration as a possible solution to the redox problem of SOFC anodes. Electrochem Solid-State, 2008,11: B186–B189

    Article  CAS  Google Scholar 

  28. Jiang SP. A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater Sci Eng, 2006, A 418: 199–210

    Article  Google Scholar 

  29. Grande FD, Thursfield A, Metcalfe IS. Morphological control of electroless plated Ni anodes: Influence on fuel cell performance. Solid State Ionics, 2008, 179: 2042–2046

    Article  Google Scholar 

  30. Grande FD, Thursfield A, Kanawka K, Droushiotis N, Doraswami U, Li K, Kelsall G, Metcalfe IS. Microstructure and performance of novel Ni anode for hollow fibre solid oxide fuel cells. Solid State Ionics, 2009, 180: 800–804

    Article  Google Scholar 

  31. Tan X, Liu Y, Li K. Mixed conducting ceramic hollow fiber membranes for air separation. AIChE J, 2005, 51: 1991–2000

    Article  CAS  Google Scholar 

  32. Tanner CW, Fung KZ, Virkar AV. Effect of porous composite electrode structure on solid oxide fuel cell performance. I. Theoretical analysis. J Electrochem Soc, 1997, 144: 21–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYao Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, N. & Tan, X. Preparation of microtubular solid oxide fuel cells based on highly asymmetric structured electrolyte hollow fibers. Sci. China Chem. 54, 850–855 (2011). https://doi.org/10.1007/s11426-010-4220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4220-8

Keywords

Navigation