Skip to main content
Log in

Metal-ligand coordinated Ca(DS)2/C14DMAO/H2O system: Phase behavior and rheological property

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A metal-ligand coordinated surfactant system formed by calcium dodecylsulfate (Ca(DS)2)/tetradecyldimethylamine oxide (C14DMAO)/H2O was studied in terms of surface tension, conductivity, negative-staining TEM, phase behavior and rheological operation. In C14DMAO solution, when Ca(DS)2 is added, metal-ligand complexes form between the Ca2+ and N→O group of C14DMAO. Under this metal-ligand driving force, different phases can be obtained at different concentrations and different ratios of Ca(DS)2 and C14DMAO. At the fixed C14DMAO concentration, L1-phase consisting of spherical micelles forms at first. With the addition of Ca(DS)2, the spherical micelles elongate to be wormlike micelles and then after an L1/Lα-two phase region, the birefringent vesicle-phase (Lαv-phase) region is observed. When Ca(DS)2 concentration continues to increase, a gel-phase region is found after the Lαv-phase region and then precipitates of undissolved Ca(DS)2 appear. The transition between different phases is affected by temperature remarkably. The wormlike micellar solutions and vesicle solutions were checked by rheological measurements and showed apparent viscoelasticity at high surfactant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaler EW, Herrington KL, Zasadzinski JA. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 1989, 245: 1371–1374

    Article  CAS  Google Scholar 

  2. Yatcilla MT, Herrington KL, Brasher LL, Kaler EW, Zasadzinski JA. Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). J Phys Chem, 1996, 100: 5874–5879

    Article  CAS  Google Scholar 

  3. Koehler RD, Raghavan SR, Kaler EW. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B, 2000, 104: 11035–11044

    Article  CAS  Google Scholar 

  4. Horbaschek K, Hoffmann H, Thunig C. Formation of properties of lamellar phase in systems of cationic surfactants and hydroxyl-naphthoate. J. Colloid Interface Sci, 1998, 206: 439–456

    Article  CAS  Google Scholar 

  5. Horbaschek K, Hoffmann H, Hao J. Classic Lα-phases as opposed to vesicle phases in cationic-anionic surfactant mixtures. J Phys Chem B, 2000, 104: 2781–2784

    Article  CAS  Google Scholar 

  6. Hao J, Liu W, Xu G, Zheng L. Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir, 2003, 19: 10635–10640

    Article  CAS  Google Scholar 

  7. Song A, Dong S, Jia X, Hao J, Liu W, Liu T. An onion phase in salt-free zero-charged catanionic surfactant solutions. Angew Chem Int Ed, 2005, 44: 4018–4021

    Article  CAS  Google Scholar 

  8. Shen Y, Hao J, Hoffmann H. Reversible phase transition between salt-free catanionic vesicles and high salinity catanionic vesicles. Soft Matter, 2007, 3: 1407–1412

    Article  CAS  Google Scholar 

  9. Zemb Th, Dubois M, Demé B, Gulik-Krzywicki Th. Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science, 1999, 283: 816–819

    Article  CAS  Google Scholar 

  10. Dubois M, Demé B, Gulik-Krzywicki Th, Dedieu JC, Vautrin C, Desert S, Perez E, Zemb Th. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature, 2001, 411: 672–675

    Article  CAS  Google Scholar 

  11. Meister A, Dubois M, Belloni L, Zemb Th. Equation of state of self-assembled disc-like and icosahedral crystallites in the dilute range. Langmuir, 2003, 19: 7259–7263

    Article  CAS  Google Scholar 

  12. Dubois M, Lizunov V, Meister A, Gulik-Krzywicki Th, Verbavatz JM, Perez E, Zemb Th. Shape control through molecular segregation in giant surfactant aggregates. PNAS, 2004, 101: 15082–15087

    Article  CAS  Google Scholar 

  13. Hoffmann H, Gräbner D, Platz G. Novel vesicles from single-chain surfactants. J Phys Chem B, 1999, 103: 611–614

    Article  CAS  Google Scholar 

  14. Wang Z, Song A, Jia X, Hao J, Liu W, Hoffmann H. Two routes to vesicle formation: metal-ligand complexation and ionic interactions. J Phys Chem B, 2005, 109: 11126–11134

    Article  CAS  Google Scholar 

  15. Song A, Jia X, Hao J. Ca2+-and Ba2+-ligand coordinated unilamellar, multilamellar, and oligovesicular vesicles. Chem Eur J, 2007, 13: 496–501

    Article  CAS  Google Scholar 

  16. Song A, Hao J. Self-assembly of metal-ligand coordinated charged vesicles. Curr Opin Colloid Interface Sci, 2009, 14: 94–102

    Article  CAS  Google Scholar 

  17. Zapf R, Beck G, Hoffmann H. Calcium surfactants: a review. Adv Colloid Interface Sci, 2003, 100–102: 349–380

    Article  CAS  Google Scholar 

  18. Li H, Wieczorek SA, Hozyst R, Xin X, Kalwarczyk T, Holyst R, Hao J. Phase transition in salt-free catanionic surfactant mixtures induced by temperature. Langmuir, 2010, 26: 34–40

    Article  CAS  Google Scholar 

  19. Acharya DP, Sato T, Kaneko M, Singh Y, Kunieda H. Effect of added poly(oxyethylene)dodecyl ether on the phase and rheological behavior of wormlike micelles in aqueous SDS solutions. J Phys Chem B, 2006, 110: 754–760

    Article  CAS  Google Scholar 

  20. Sharma SC, Shrestha LK, Tsuchiya K, Sakai K, Sakai H, Abe M. Viscoelastic wormlike micelles of long polyoxyethylene chain phytosterol with lipophilic nonionic surfactant in aqueous solution. J Phys Chem B, 2009, 113: 3043–3050

    Article  CAS  Google Scholar 

  21. Schubert BA, Kaler EW, Wagner NJ. The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir, 2003, 19: 4079–4089

    Article  CAS  Google Scholar 

  22. Varade D, Rodrguez-Abreu C, Aramaki K. Wormlike micelles in mixed surfactant systems: effect of cosolvents. J Phys Chem B, 2007, 111: 10438–10447

    Article  CAS  Google Scholar 

  23. Li H, Hao J. Phase behavior and rheological properties of a salt-free catanionic surfactant TTAOH/LA/H2O system. J Phys Chem B, 2008, 112: 10497–10508

    Article  CAS  Google Scholar 

  24. Cates ME. Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules, 1987, 20: 2289–2296

    Article  CAS  Google Scholar 

  25. Rouse PE. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys, 1953, 21: 1272–1280

    Article  CAS  Google Scholar 

  26. Tian H, Ding Q, Zhang J, Song A, Hao J. Effect of hydrophilic groups of Ca-surfactants and hydrophobic chains of CnDMAO on coordinated vesicle formation. Langmuir, 2010, 26: 18652–18658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiXin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tian, H., Ding, Q. et al. Metal-ligand coordinated Ca(DS)2/C14DMAO/H2O system: Phase behavior and rheological property. Sci. China Chem. 54, 490–496 (2011). https://doi.org/10.1007/s11426-010-4217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4217-3

Keywords

Navigation