Skip to main content
Log in

Imitating trumpet shells: Möbius container molecules

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Möbius container molecules C64H8, C60N4H4, and C58N6H2 with topological one-sided characteristics were constructed at the first time by imitating natural trumpet shells. The structure is an open cage with an inner hexagonal bridge. The bridge joints the outer and inner surfaces of the cage to form a new one-sided Möbius structure. The optimized structures of the three molecules in the singlet (the ground state), triplet and quintet states are obtained using the density functional theory (B3LYP). For the ground state structures of the three Möbius molecules, their oxidizabilities are weaker than that of the C60 and reducibilities are close to that of the stable C80 cage and slightly stronger than that of the C60. These may show that the unusual Möbius structures have some stability. Their potential properties were predicted, for example, the special aromaticity of the bridge ring due to the unique interaction between the bridge and the cage wall. These findings enlarge the knowledge of Möbius molecules. The idea of bionic and topological imitating in chemistry may promote the design of new complex-shaped nano-molecules and molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajami D, Oeckler O, Simon A, Herges R. Synthesis of a Möbius aromatic hydrocarbon. Nature, 2003, 426: 819–821

    Article  CAS  Google Scholar 

  2. Rainer H. Topology in chemistry: designing Möbius molecules. Chem Rev, 2006, 106: 4820–4842

    Article  CAS  Google Scholar 

  3. Castro C, Chen Z, Wannere CS, Jiao H, Karney WL, Mauksch M, Puchta R, Hommes NJR v E, Schleyer P v R. Investigation of a putative Möbius aromatic hydrocarbon. The effect of benzannelation on Möbius [4n]annulene aromaticity. J Am Chem Soc, 2005, 127: 2425–2432

    Article  CAS  Google Scholar 

  4. David ML. Aromatics do the twist. Nature, 2003, 426: 776–777

    Article  CAS  Google Scholar 

  5. Rzepa HS. Möbius aromaticity and delocalization. Chem Rev, 2005, 105: 3 697–3715

    Article  CAS  Google Scholar 

  6. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer P v R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev, 2005, 105: 3842–3888

    Article  CAS  Google Scholar 

  7. Jiao H, Schleyer P v R. A detailed theoretical analysis of the 1,7-sigmatropic hydrogen shift: the Möbius character of the eight-electron transition structure. Angew Chem Int Ed, 1993, 32: 1763–1765

    Article  Google Scholar 

  8. Jiao H, Schleyer P v R. Evidence for the Möbius aromatic character of eight π electron conrotatory transition structure. Magnetic criteria. J Chem Soc Perkin Trans 2, 1994, 407-410

  9. Perret-Aebi LE, Zelewsky A, Dietrich-Buchecker C, Sauvage JP. Stereoselective synthesis of a topologically chiral molecule: the trefoil knot. Angew Chem, Int Ed, 2004, 43: 4482–4485

    Article  CAS  Google Scholar 

  10. Safarowsky O, Nieger M, Frohlich R, Vogtle F. A molecular knot with twelve amide groups — one-step synthesis, crystal structure, chirality. Angew Chem Int Ed, 2000, 39: 1616–1618

    Article  CAS  Google Scholar 

  11. Cram DJ. Molecular container compounds. Nature, 1992, 356: 29–36

    Article  CAS  Google Scholar 

  12. Maslak V, Yan Z, Xia S, Gallucci J, Hadad CM, Badjić JD. Design, synthesis, and conformational dynamics of a gated molecular basket. J Am Chem Soc, 2006, 128: 5887–5894

    Article  CAS  Google Scholar 

  13. Gibb CLD, Stevens ED, Gibb BC. C-H...X-R (X=Cl, Br, and I) hydrogen bonds drive the complexation properties of a nanoscale molecular basket. J Am Chem Soc, 2001, 123: 5849–5850

    Article  CAS  Google Scholar 

  14. Chen DL, Tian WQ, Feng JK, Sun CC. Structures, stabilities, and electronic and optical properties of C58 fullerene isomers, ions, and metallofullerenes. ChemPhysChem, 2007, 8: 1029–1036

    Article  CAS  Google Scholar 

  15. Sergio DT, Fernando M, Manuel A. Structure and reactivity of C q+54 (q = 0, 1, 2 and 4) fullerenes. PhysChemChemPhys, 2005, 7: 3756–3761

    Google Scholar 

  16. Shkrob IA. The structure of the hydrated electron. Part 1. Magnetic resonance of internally trapping water anions: A density functional theory study. J Phys Chem A, 2007, 111: 5223–5231

    Article  CAS  Google Scholar 

  17. Rienstra-Kiracofe JC, Tschumper GS, Schaefer III HF, Sreela N, Ellison GB. Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem Rev, 2002, 102: 231–282

    Article  CAS  Google Scholar 

  18. Khan A. Solvated electron in (H2O) 20 dodecahedral cavity: calculated stretch frequencies and vertical dissociation energy. Chem Phys Lett, 2005, 401: 85–88

    Article  CAS  Google Scholar 

  19. Paul A, Wannere CS, Kasalova V, Schleyer P v R, Schaefer III HF. The peculiar trend of cyclic perfluoroalkane electron affinities with increasing ring size. J Am Chem Soc, 2007, 127: 15457–15469

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Shida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CT, 2004

    Google Scholar 

  21. Schreiner PR, Fokin AA, Pascal JRA, Meijere AD. Many density functional theory approaches fail to give reliable large hydrocarbon isomer energy differences. Org Lett, 2006, 8: 3635–3638

    Article  CAS  Google Scholar 

  22. Okamoto H, Satake K, Ishida H, Kimura M. Photoreaction of a 2,11-diaza[3.3]paracyclophane derivative: Formation of octahedrane by photochemical dimerization of benzene. J Am Chem Soc, 2006, 128: 16508–16509

    Article  CAS  Google Scholar 

  23. Wang YF, Li ZR, Wang FF, Sun CC. The inter-ring σ(π/π) covalent interactions of cyclodimers of benzenes. PhysChemChemPhys, 2009, 11: 455–462

    Article  CAS  Google Scholar 

  24. Huang J, Kertesz M. Intermolecular covalent π-π bonding interaction indicated by bond distances, energy bands, and magnetism in biphenalenyl biradicaloid molecular crystal. J Am Chem Soc, 2007, 129: 1634–1643

    Article  CAS  Google Scholar 

  25. Hoffmann SK, Corvan PJ, Singh P, Sethuklekshmi CN, Metzger RM, Hatfield WE. Crystal structure and excited triplet-state electron paramagnetic resonance of the SIGMA-bonded TCNQ dimer in bis (2,9-dimethyl-1,10-phenanthroline)copper(I) tetracyanoquinodimethane dimer [Cu(DMP)2]2[TCNQ]2. J Am Chem Soc, 1983, 105: 4608–4618

    Article  CAS  Google Scholar 

  26. Zhao H, Heintz RA, Dunbar KR, Rogers RD. Unprecedented two-dimensional polymers of Mn(II) with TCNQ−· (TCNQ = 7,7,8,8-tetra-cyanoquinodimethane). J Am Chem Soc, 1996, 118: 12844–12845

    Article  CAS  Google Scholar 

  27. Kaupp G, Boy J. Overlong C-C single bonds. Angew Chem Int Ed, 1997, 36: 48–49

    Article  CAS  Google Scholar 

  28. Kawai T, Okada S, Miyamoto Y, Oshiyama A. Carbon three-dimensional architecture formed by intersectional collision of graphene patches. Phys Rev B, 2005, 72: 035428

    Article  CAS  Google Scholar 

  29. Manolopoulos DE, May JC, Down SE. Theoretical studies of the fullerenes: C34 to C70. Chem Phys Lett, 1991, 181: 105–111

    Article  CAS  Google Scholar 

  30. Hu YH, Ruckenstein E. Endohedral chemistry of C60-based fullerene cages. J Am Chem Soc, 2005, 127: 11277–11282

    Article  CAS  Google Scholar 

  31. Zimmerman JA, Eyler JR, Bach SBH, McElvany SW. Magic number carbon clusters: Ionization potentials and selective reactivity. J Chem Phys, 1991, 94: 3556

    Article  CAS  Google Scholar 

  32. Mestechkin MM, Klimko GT. Photoelectron spectra of fullerenes C60, C70, C76, C80. J Molecular Structure, 1995, 348: 401–404

    Article  CAS  Google Scholar 

  33. Henning Z, Manuel A, Fernando M. First- and second-electron affinities of C60 and C70 isomers. Phys Rev A, 2007, 76: 043205

    Article  CAS  Google Scholar 

  34. Miller JS, Dixon DA, Calabrese JC, Vazquez C, Krusic PJ, Ward MD, Wasserman E, Harlow RL. Hexaazaoctadecahydrocoronene (HOC). Structural and physical properties of [HOC]n (n = 0, 1+, 2+, 3+, 4+). J Am Chem Soc, 1990, 112: 381–398

    CAS  Google Scholar 

  35. Siegel JS. Chemical topology and interlocking molecules. Science, 2004, 304: 1256–1258

    Article  CAS  Google Scholar 

  36. Ando T, Nakanishi T, Saito R. Berry’s phase and absence of back scattering in carbon nanotubes. J Phys Soc Jpn, 1998, 67: 2857–2862

    Article  CAS  Google Scholar 

  37. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  38. Kazuhisa K, Yutaka O. Finite-size scaling for the Ising model on the Möbius strip and the Klein bottle. Phys Rev Lett, 2001, 86: 2134–2137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiRu Li or FengLong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, F., Wang, F., Li, Z. et al. Imitating trumpet shells: Möbius container molecules. Sci. China Chem. 54, 454–460 (2011). https://doi.org/10.1007/s11426-010-4216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4216-4

Keywords

Navigation