Skip to main content
Log in

Dendrimer/inorganic nanomaterial composites: Tailoring preparation, properties, functions, and applications of inorganic nanomaterials with dendritic architectures

  • Reviews
  • Special Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Inorganic nanomaterials have a variety of fascinating properties and a wide range of promising applications. However, they often suffer from instability and poor processibility. To solve it, dendrimers, a special family of macromolecules having a unique three-dimensional architecture, provide one of the excellent solutions. In addition, the site-selective functionalization of the specific elements in the dendritic structure endows the nanohybrid system new functions and applications. Inspired by such ideas, a variety of dendrimer/inorganic nanomaterial composites have been designed and exploited. This review article selects a number of representative examples, and illustrates their preparation, characterization, properties, and applications. The influence and the unique features that originate from the introduced dendritic structures are particularly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao CNR, Müller A, Cheetham AK. The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Weinheim: Wiley-VCH, 2004

    Book  Google Scholar 

  2. Pachón LD, Rothenberg G. Transition-metal nanoparticles: Synthesis, stability and the leaching issue. Appl Organometal Chem, 2008, 22: 288–299

    Article  Google Scholar 

  3. Newkome GR, Moorefield CN, Vögtle F. Dendrons and Dendrimers; Concepts, Synthesis and Applications. Weinheim: Wiley-VCH, 2001

    Book  Google Scholar 

  4. Fréchet JMJ, Tomalia DA. Dendrimers and Other Dendritic Polymers. Chichester: John Wiley & Sons Ltd, 2001

    Book  Google Scholar 

  5. Li WS, Jang WD, Aida T. Molecular design and self-assembly of functional dendrimers. Macromolecular Engineering. Precise Synthesis, Materials Properties, Applications. Eds. Matyjaszewski K, Gnanou Y. Leibler L. Weinheim: Wiley-VCH, 2007, V2: 1057–1102

    Google Scholar 

  6. Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chainlike” syntheses of molecular cavity topologies. Synthesis, 1978(2): 155–158

  7. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: Starburst-dendritic macromolecules. Polym J, 1985, 17(1): 117–132

    Article  CAS  Google Scholar 

  8. Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc, 1990, 112: 7638–7647

    Article  CAS  Google Scholar 

  9. Hecht S, Fréchet JMJ. Dendritic encapsulation of function: Applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed, 2001, 40(1): 74–91

    Article  CAS  Google Scholar 

  10. Tomoyose Y, Jiang DL, Jin RH, Aida T, Yamashita T, Horie K, Yashima E, Okamoto Y. Aryl ether dendrimers with an interior metalloporphyrin functionality as a spectroscopic probe: Interpenetrating interaction with dendritic imidazoles. Macromolecules, 1996, 29(15): 5236–5238

    Article  CAS  Google Scholar 

  11. Li WS, Jiang DL, Aida T. Photoluminescence properties of discrete conjugated wires wrapped within dendrimeric envelopes: “Dendrimer effects” on π-electronic conjugation. Angew Chem Int Ed, 2004, 43: 2943–2947

    Article  CAS  Google Scholar 

  12. Jiang DL, Choi CK, Honda K, Li WS, Yuzawa T, Aida, T. Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes. J Am Chem Soc, 2004, 126(38): 12084–12089

    Article  CAS  Google Scholar 

  13. Li WS, Jiang DL, Suna Y, Aida T. Cooperativity in chiroptical sensing with dendritic zinc porphyrins, J Am Chem Soc, 2005, 127(21): 7700–7702

    Article  CAS  Google Scholar 

  14. Li WS, Aida T. Dendrimer porphyrins and phthalocyanines. Chem Rev, 2009, 109(11), 6047-6076

    Google Scholar 

  15. Cho S, Li WS, Yoon MC, Ahn TA, Jiang DL, Kim J, Aida T, Kim D. Relationship between incoherent excitation energy migration processes and molecular structures in zinc(II) porphyrin dendrimers. Chem Eur J, 2006, 12: 7576–7584

    Article  CAS  Google Scholar 

  16. Yang J, Cho S, Yoo H, Park J, Li WS, Aida T, Kim D. Control of molecular structures and photophysical properties of zinc(II) porphyrin dendrimers using bidentate guests: Utilization of flexible dendrimer structures as a controllable mold. J Phys Chem A, 2008, 112(30), 6869–6876

    Article  CAS  Google Scholar 

  17. Li WS, Kim KS, Jiang DL, Tanaka H, Kawai T, Kwon JH, Kim D, Aida T. Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold: Remarkable dendrimer effects on photoinduced charge separation. J Am Chem Soc, 2006, 128(32): 10527–10532

    Article  CAS  Google Scholar 

  18. Zhao M, Sun L, Crooks RM. Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc, 1998, 120(19): 4877–4878

    Article  CAS  Google Scholar 

  19. Balogh L, Tomalia DA. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc, 1998, 120: 7355–7356

    Article  CAS  Google Scholar 

  20. Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir, 1998, 14, 3157–3159

    Article  CAS  Google Scholar 

  21. Zhao M, Crooks R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew Chem Int Ed, 1999, 38(3): 364–366

    Article  CAS  Google Scholar 

  22. Zhao M, Crooks RM. Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis. Adv Mater, 1999, 11(3): 217–220

    Article  CAS  Google Scholar 

  23. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK. Dendrimerencapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc Chem Res, 2001, 34(3): 181–190

    Article  CAS  Google Scholar 

  24. Jin L, Yang SP, Tian QW, Wu HX, Cai YJ. Preparation and characterization of copper metal nanoparticles using dendrimers as protectively colloids. Mater Chem Phys, 2008, 112, 977–983

    Article  CAS  Google Scholar 

  25. Knecht MR, Crooks RM. Magnetic properties of dendrimerencapsulated iron nanoparticles containing an average of 55 and 147 atoms. New J Chem, 2007, 31(7): 1349–1353

    Article  CAS  Google Scholar 

  26. Knecht MR, Garcia-Martinez JC, Crooks RM. Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing <150 atoms. Chem Mater, 2006, 18(21): 5039–5044

    Article  CAS  Google Scholar 

  27. Nádasdi L, Joó F, Horváth I, Vígh L. Colloidal metal dispersions as catalysts for selective surface hydrogenation of biomembranes. Part 2. Preparation of nanosize platinum metal catalysts and characterization in hydrogenation of water soluble olefins and synthetic biomembrane models. Appl Catal A, 1997, 162(1–2): 57–69

    Google Scholar 

  28. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K. Dendritic nanoreactors encapsulated Pd nanoparticles for substrate-specific hydrogenation of olefins. Nano Lett, 2002, 2(9): 999–1002

    Article  CAS  Google Scholar 

  29. Kralmer M, Pérignon N, Haag R, Marty JD, Thomann R, Viguerie NL, Mingotaud C. Water-soluble dendritic architectures with carbohydrate shells for the templation and stabilization of catalytically active metal nanoparticles. Macromolecules, 2005, 38: 8308–8315

    Article  Google Scholar 

  30. Lemo J, Heuzé K, Astruc D. Synthesis and catalytic activity of DAB-dendrimer encapsulated Pd nanoparticles for the Suzuki coupling reaction. Inorg Chim Acta, 2006, 359: 4909–4911

    Article  CAS  Google Scholar 

  31. Badetti E, Caminade AM, Majoral JP, Moreno-Mañas M, Sebastián RM. Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles inperiphery. Langmuir, 2008, 24: 2090–2101

    Article  CAS  Google Scholar 

  32. Shifrina ZB, Rajadurai MS, Firsova NV, Bronstein LM, Huang X, Rusanov AL, Muellen K. Poly(phenylene-pyridyl) dendrimers: Synthesis and templating of metal nanoparticles. Macromolecules, 2005, 38: 9920–9932

    Article  CAS  Google Scholar 

  33. Ornelas C, Salmon L, Ruiz J, Astruc D. Catalytically efficient palladium nanoparticles stabilized by “click” ferrocenyl dendrimers. Chem Commun, 2007, (46): 4946–4948

  34. Ornelas C, Salmon L, Ruiz J, Astruc D. “Click” dendrimers: Synthesis, redox sensing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. Chem Eur J, 2008, 14(1): 50–64

    Article  CAS  Google Scholar 

  35. Ornelas C, Ruiz J, Salmon L, Astruc D. Sulphonated “click” dendrimer-stabilized palladium nanoparticles as highly efficient catalysts for olefin hydrogenation and suzuki coupling reactions under ambient conditions in aqueous media. Adv Synth Catal, 2008, 350: 837–845

    Article  CAS  Google Scholar 

  36. Pittelkow M, Brock-Nannestad T, Moth-Poulsenb K, Christensen, KB. Chiral dendrimer encapsulated Pd and Rh nanoparticles. Chem Commun, 2008, (20): 2358–2360

  37. Keilitz J, Nowag S, Marty JD, Haag R. Chirally modified platinum nanoparticles stabilized by dendritic core-multishell architectures for the asymmetric hydrogenation of ethyl pyruvate. Adv Synth Catal, 2010, 352: 1503–1511

    Article  CAS  Google Scholar 

  38. Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ. Dendrimer templates for the formation of gold nanoclusters. Macromolecules, 2000, 33: 6042–6050

    Article  Google Scholar 

  39. Bronstein LM, Sidorov SN, Gourkova AY, Valetsky PM, Hartmann J, Breulmann M, Crlfen H, Antonietti M. Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation. Inorg Chim Acta, 1998, 280: 348–354

    Article  CAS  Google Scholar 

  40. Shi X, Sun K, Baker Jr. JR. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem, C, 2008, 112(22): 8251–8258

    Article  CAS  Google Scholar 

  41. Pietsch T, Appelhans D, Gindy N, Voit B, Fahmi A. Oligosaccharide-modified dendrimers for templating gold nanoparticles: Tailoring the particle size as a function of dendrimer generation and -molecular structure. Colloid Surf A: Physicochem Eng Aspects, 2009, 341: 93–102

    Article  CAS  Google Scholar 

  42. Boisselier E, Diallo AK, Salmon L, Ornelas C, Ruiz J, Astruc D. Encapsulation and stabilization of gold nanoparticles with “click” polyethyleneglycol dendrimers. J Am Chem Soc, 2010, 132(8): 2729–2742

    Article  CAS  Google Scholar 

  43. Wang R, Yang J, Zheng Z, Carducci MD, Jiao J, Seraphin S. Dendron-controlled nucleation and growth of gold nanoparticles. Angew Chem Int Ed, 2001, 40(3): 549–552

    Article  CAS  Google Scholar 

  44. Kim MK, Jeon YM, Jeon WS, Kim HJ, Hong SG, Park CG, Kim K. Novel dendron-stabilized gold nanoparticles with high stability and narrow size distribution. Chem Commun, 2001, 667–668

  45. Gopidas KR, Whitesell JK, Fox MA. Nanoparticle-cored dendrimers: Synthesis and characterization. J Am Chem Soc, 2003, 125(21): 6491–6502

    Article  CAS  Google Scholar 

  46. Gopidas KR, Whitesell JK, Fox MA. Metal-core-organic shell den drimers as unimolecular micelles. J Am Chem Soc, 2003, 125(46): 14168–14180

    Article  CAS  Google Scholar 

  47. Shon YS, Choi D, Dare J, Dinh J. Synthesis of nanoparticle-cored dendrimers by convergent dendritic functionalization of monolayerprotected nanoparticles. Langmuir, 2008, 24: 6924–6931

    Article  CAS  Google Scholar 

  48. Hao E, Sun H, Zhou Z, Liu J, Yang B, Shen J. Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem Mater, 1999, 11(11): 3096–3102

    Article  CAS  Google Scholar 

  49. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc, 2000, 122(49): 12142–12150

    Article  CAS  Google Scholar 

  50. Qu LH, Peng A, Peng XG. Alternative routes toward high quality CdSe nanocrystals. Nano Lett, 2001, 1(6): 333–337

    Article  CAS  Google Scholar 

  51. Chen YF, Rosenzweig Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett, 2002, 2(11): 1299–1302

    Article  CAS  Google Scholar 

  52. Sooklal K, Hanus LH, Ploehn HJ, Murphy CJ. Blue-emitting CdS/dendrimer nanocomposite. Adv Mater, 1998, 10(14): 1083–1087

    Article  CAS  Google Scholar 

  53. Lackowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ. Luminescence spectral properties of CdS nanoparticles. J Phys Chem B, 1999, 103(36): 7613–7620

    Article  Google Scholar 

  54. Huang J, Sooklal K, Murphy CJ, Ploehn HJ. Polyamine-quantum dot nanocomposites: Linear versus starburst stabilizer architectures. Chem Mater, 1999, 11(12): 3595–3601

    Article  CAS  Google Scholar 

  55. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP. Corrigendum: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol, 2003, 21(1): 41–46

    Article  CAS  Google Scholar 

  56. Zhang CX, O’Brien S, Balogh L. Comparison and stability of CdSe nanocrystals covered with amphiphilic poly(amidoamine) dendrimers. J Phys Chem B, 2002, 106(40):10316–10321

    Article  CAS  Google Scholar 

  57. Liu J, Li H, Wang W, Xu H, Yang X, Liang J, He Z. Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small, 2006, 2(8–9): 999–1002

    Article  CAS  Google Scholar 

  58. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  59. Guldi DM, Rahman GMA, Zerbetto F, Prato M. Carbon nanotubes in electron donoracceptor nanocomposites. Acc Chem Res, 2005, 38(11): 871–878

    Article  CAS  Google Scholar 

  60. Sgobba V, Guldi DM. Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics. Chem Soc Rev, 2009, 38(1): 165–184

    Article  CAS  Google Scholar 

  61. Imahori H, Umeyama T. Donor-acceptor nanoarchitecture on semiconducting electrodes for solar energy conversion. J Phys Chem C, 2009, 113(21): 9029–9039

    Article  CAS  Google Scholar 

  62. Dillon AC. Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev, 2010, 110(11): 6856–6872

    Article  CAS  Google Scholar 

  63. Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv Mater, 2009, 21(1): 29–53

    Article  CAS  Google Scholar 

  64. Bianco A, Kostaleros K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun, 2005, 571-577

  65. Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc, 2005, 127(16): 6021–6026

    Article  CAS  Google Scholar 

  66. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res, 2008, 41(1): 60–68

    Article  CAS  Google Scholar 

  67. Karousis N, Tagmatarchis N. Current progress on the chemical modification of carbon nanotubes. Chem Rev, 2010, 110(9), 5366–5397

    Article  CAS  Google Scholar 

  68. Sun YP, Huang WJ, Lin Y, Fu,KF, Kitaygorodskiy A, Riddle LA, Yu YJ, Carroll DL. Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties. Chem Mater, 2001, 13(9): 2864–2869

    Article  CAS  Google Scholar 

  69. Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A. Functionalization of single-walled carbon nanotubes with (R)-oxycarbonyl nitrenes. J Am Chem Soc, 2003, 125(28): 8566–8580

    Article  CAS  Google Scholar 

  70. Campidelli S, Sooambar C, Diz EL, Ehli C, Guldi DM, Prato M. Dendrimer-functionalized single-wall carbon nanotubes: Synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc, 2006, 128(38): 12544–12552

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiShi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Li, W. Dendrimer/inorganic nanomaterial composites: Tailoring preparation, properties, functions, and applications of inorganic nanomaterials with dendritic architectures. Sci. China Chem. 54, 286–301 (2011). https://doi.org/10.1007/s11426-010-4205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4205-7

Keywords

Navigation