Skip to main content
Log in

Temperature-sensitive molecularly imprinted microgels with esterase activity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Temperature-sensitive molecularly imprinted microgels (MIGs) exhibiting esterase activity were prepared by a reverse emulsion method using dialdehyde dextran-histidine conjugate (PAD-His) as the functional macromonomer and p-nitrophenyl phosphate (NPP) as the stable transition state analogue (TSA) as well as Co2+ as the coordination center. The catalytic activity of MIGs was greatly influenced by the amount of the template, and could be modulated by temperature. The hydrolysis kinetics of p-nitrophenyl acetate (NPA) in the presence of MIGs could be described by the Michaelis-Menten equation. The Michaelis-Menten constant and maximum velocity were found to be 2.2 × 10−5 mol/L and 2.04 × 10∞8 mol/h, respectively. In addition, the MIGs were found to have a high catalytic selectivity to NPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M. The first example of molecularly imprinted nanogels with aldolase type I activity. Chem Eur J, 2008, 14: 7059–7065

    CAS  Google Scholar 

  2. Becker JJ, Gagne MR. Exploiting the synergy between coordination chemistry and molecular imprinting in the quest for new catalysts. Acc Chem Res, 2004, 37: 798–804

    Article  CAS  Google Scholar 

  3. Lettau K, Warsinke A, Laschewsky A, Mosbach K, Yilmaz E, Scheller FW. An esterolytic imprinted polymer prepared via a silica-supported transition state analogue. Chem Mater, 2004, 16: 2745–2749

    Article  CAS  Google Scholar 

  4. Sellergren B, Karmalkar RN, Shea KJ. Enantioselective ester hydrolysis catalyzed by imprinted polymers. J Org Chem, 2000, 65: 4009–4027

    Article  CAS  Google Scholar 

  5. Matsui J, Nicholls IA, Karube I, Mosbach K. Carbon-carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting: an artificial class II aldolase. J Org Chem, 1996, 61: 5414–5417

    Article  CAS  Google Scholar 

  6. Cheng ZY, Zhang LW, Li YZ. Synthesis of an enzyme-like imprinted polymer with the substrate as the template, and its catalytic properties under aqueous conditions. Chem Eur J, 2004, 10: 3555–3561

    Article  CAS  Google Scholar 

  7. Tada M, Sasaki T, Iwasawa Y. Design of a novel molecular-imprinted Rh-amine complex on SiO2 and its shape-selective catalysis for α-methylstyrene hydrogenation. J Phys Chem B, 2004, 108: 2918–2930

    Article  CAS  Google Scholar 

  8. Liu JQ, Wulff G. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers. J Am Chem Soc, 2008, 130: 8044–8054

    Article  CAS  Google Scholar 

  9. Shechter I, Ramon O, Portnaya I, Paz Y, Livney YD. Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly (N-isopropy-lacrylamide) (PNIPA) solutions. Macromolecules, 2009, 43: 480–487

    Article  CAS  Google Scholar 

  10. Puoci F, Iemma F, Picci N. Stimuli-responsive molecularly imprinted polymers for drug delivery: a review. Curr Drug Deliver, 2008, 5: 85–96

    Article  CAS  Google Scholar 

  11. Huynh DP, Nguyen MK, Kim BS, Lee DS. Molecular design of novel pH/temperature-sensitive hydrogels. Polymer, 2009, 50: 2565–2571

    Article  CAS  Google Scholar 

  12. Lee Y, Chung HJ, Yeo S, Ahn CH, Lee H, Messersmith PB, Park TG. Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010, 6: 977–983

    Article  CAS  Google Scholar 

  13. Park TG. Stabilization of enzyme immobilized in temperature-sensitive hydrogels. Biotechnol Lett, 1993, 15: 57–60

    Article  CAS  Google Scholar 

  14. Alexander C, Davidson L, Hayes W. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron, 2003, 59: 2025–2057

    Article  CAS  Google Scholar 

  15. Anderson CD, Shea KJ, Rychnovsky SD. Strategies for the generation of molecularly imprinted polymeric nitroxide catalysts. Org Lett, 2005, 7: 4879–4882

    Article  CAS  Google Scholar 

  16. Volkmann A, Bruggemann O. Catalysis of an ester hydrolysis applying molecularly imprinted polymer shells based on an immobilized chiral template. Reac & Funct Polym, 2006, 66: 1725–1733

    Article  CAS  Google Scholar 

  17. Visnjevski A, Schomacker R, Yilmaz E, Bruggemann O. Catalysis of a Diels-Alder cycloaddition with differently fabricated molecularly imprinted polymers. Catal Commun, 2005, 6: 601–606

    Article  CAS  Google Scholar 

  18. Cheng ZY, Li YZ. The role of molecular recognition in regulating the catalytic activity of peroxidase-like polymers imprinted by a reductant substrate. J Mol Catal A: Chem, 2006, 256: 9–15

    Article  CAS  Google Scholar 

  19. Svenson J, Zheng N, Nicholls IA. A molecularly imprinted polymer-based synthetic transaminase. J Am Chem Soc, 2004, 126: 8554–8560

    Article  CAS  Google Scholar 

  20. Stewart JD, Liotta LJ, Benkovic SJ. Reaction mechanisms displayed by catalytic antibodies. Acc Chem Res, 1993, 26: 396–404

    Article  CAS  Google Scholar 

  21. Tong KJ, Xiao S, Li SJ, Wang J. Molecular recognition and catalysis by molecularly imprinted polymer catalysts: thermodynamic and kinetic surveys on the specific behaviors. J Inorg Organomet Polym, 2008, 18: 426–433

    Article  CAS  Google Scholar 

  22. Kawanami Y, Yunoki T, Nakamura A, Fujii K, Umano K, Yamauchi H, Masuda K. Imprinted polymer catalysts for the hydrolysis of p-nitrophenyl acetate. J Mol Catal A: Chem, 1999, 145: 107–110

    Article  CAS  Google Scholar 

  23. Agarwal A, Gupta U, Asthana A, Jain NK. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials, 2009, 30: 3588–3596

    Article  CAS  Google Scholar 

  24. Bruneel D, Schacht E. Chemical modification of pullulan: 1. Periodate oxidation. Polymer, 1993, 34: 2628–2632

    CAS  Google Scholar 

  25. Cheung RY, Ying YM, Rauth AM, Marcon N, Wu XY. Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials, 2005, 26: 5375–5385

    Article  CAS  Google Scholar 

  26. Brunel F, Veron L, David L, Domard A, Delair T. A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir, 2008, 24: 11370–11377

    Article  CAS  Google Scholar 

  27. Emgenbroich M, Wulff G. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers. Chem Eur J, 2003, 9: 4106–4117

    Article  CAS  Google Scholar 

  28. Say R, Erdem M, Ersoez A, Tuerk H, Denizli A. Biomimetic catalysis of an organophosphate by molecularly surface imprinted polymers. Appl Catal A: Gen, 2005, 286: 221–225

    Article  CAS  Google Scholar 

  29. Ma XM, Xi JY, Huang XB, Zhao X, Tang XZ. Novel hydrophobically modified temperature-sensitive microgels with tunable volume-phase transition temperature. Mater Lett, 2004, 58: 3400–3404

    Article  CAS  Google Scholar 

  30. Li SJ, Pilla S, Gong SQ. Modulated molecular recognition by a temperature-sensitive molecularly-imprinted polymer. J Polym Sci: Part A, 2009, 47: 2352–2360

    Article  CAS  Google Scholar 

  31. Pauling L. Molecular architecture and biological reactions. Chem & Eng News, 1946, 24: 1375–1377

    Article  CAS  Google Scholar 

  32. Lerner RA, Benkovic SJ, Schultz PG. At the crossroads of chemistry and immunology: catalytic antibodies. Science, 1991, 252: 659–667

    Article  CAS  Google Scholar 

  33. Schultz PG. Antibodies as catalysts. Angew Chem, 1989, 101: 1336–1348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yang, H. & Zhang, L. Temperature-sensitive molecularly imprinted microgels with esterase activity. Sci. China Chem. 54, 515–520 (2011). https://doi.org/10.1007/s11426-010-4200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4200-z

Keywords

Navigation