Skip to main content
Log in

Preparation and potential application of functional ordered microstructures

  • Feature Articles
  • Special Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the development of science and technology, ordered microstructures with special functions have aroused intense research interest. These functional microstructures have been widely used in fields of microelectronic devices, micro-reactors, biochemical sensors and optical devices, etc. This paper summaries our work on preparation and application of microscopic patterned surfaces with ordered microstructures, and looks into the future development of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sze SM. Semiconductor Devices: Physics and Technology. New York: John Wiley, 1985

    Google Scholar 

  2. Moreau WM. Semiconductor Lithography: Principles and Materials. New York: Plenum, 1988

    Google Scholar 

  3. Wise KD, Najafi K. Microfabrication techniques for integrated sensors and microsystems. Science, 1991, 254(5036): 1335–1342

    Article  CAS  Google Scholar 

  4. Bryzek J, Peterson K, McCulley W. Micromachines on the march. IEEE Spectrum, 1994, 31(5): 20–31

    Article  Google Scholar 

  5. Service RF. The incredible shrinking laboratory. Science, 1995, 268(5207): 26–27

    Article  CAS  Google Scholar 

  6. Xia YN, Rogers JA, Paul KE, Whitesides GM. Unconventional methods for fabricating and patterning nanostructures. Chem Rev, 1999, 99(7): 1823–1848

    Article  CAS  Google Scholar 

  7. Service RF. Computers: Can chip devices keep shrinking? Science, 1996, 274(5294): 1834–1836

    Article  CAS  Google Scholar 

  8. Schaller RR. Moore’s law: Past, present and future. IEEE Spectrum, 1997, 34(6): 53–59

    Article  Google Scholar 

  9. Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350

    Article  CAS  Google Scholar 

  10. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science, 1994, 264(5158): 553–556

    Article  CAS  Google Scholar 

  11. Devoret MH, Esteve D, Urbina, C. Single-electron transfer in metallic nanostructures. Nature, 1992, 360: 547–553

    Article  Google Scholar 

  12. Petit C, Taleb A, Pileni MP. Self-organization of magnetic nanosized cobalt particles. Adv Mater, 1998, 10(3): 259–261

    Article  CAS  Google Scholar 

  13. Yao JM, Yan X, Lu G, Zhang K, Chen X, Jiang L, Yang B. Patterning colloidal crystals by lift-up soft lithography. Adv Mater, 2004, 16(1): 81–84

    Article  CAS  Google Scholar 

  14. Yan X, Yao JM, Lu G, Chen X, Zhang K, Yang B. Microcontact printing of colloidal crystals. J Am Chem Soc, 2004, 126(34): 10510–10511

    Article  CAS  Google Scholar 

  15. Yan X, Yao JM, Lu G, Li X, Zhang JH, Han K, Yang B. Fabrication of non-close-packed arrays of colloidal spheres by soft lithography. J Am Chem Soc, 2005, 127(21): 7688–7689

    Article  CAS  Google Scholar 

  16. Chen X, Chen ZM, Fu N, Lu G, Yang B. Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals. Adv Mater, 2003, 15(17): 1413–1417

    Article  CAS  Google Scholar 

  17. Chen X, Sun ZQ, Zheng LL, Chen ZM, Wang YF, Fu N, Zhang K, Yan X, Liu H, Jiang L, Yang B. Colloidal crystal-assisted imprint for mesoscale structured arrays and hierarchical patterns. Adv Mater, 2004, 16(18): 1632–1636

    Article  CAS  Google Scholar 

  18. Sun ZQ, Li YF, Wang YF, Chen X, Zhang J, Zhang K, Wang Z, Bao C, Zeng J, Zhao B, Yang B. Three-dimensional colloidal crystal-assisted lithography for two-dimensional patterned arrays. Langmuir, 2007, 23(21): 10725–10731

    Article  CAS  Google Scholar 

  19. Sun ZQ, Li Y, Zhang JH, Li YF, Zhao ZH, Zhang K, Zhang G, Guo JR, Yang B. A universal approach to fabricate various nanoring arrays based on colloidal-crystal-assisted-lithography strategy. Adv Funct Mater, 2008, 18(24): 4036–4042

    Article  CAS  Google Scholar 

  20. Lu G, Li W, Yao JM, Zhang G, Yang B, Shen JC. Fabricating ordered two-dimensional arrays of polymer rings with submicrometersized features on patterned self-assembled monolayers by dewetting. Adv Mater, 2002, 14(15): 1049–1053

    Article  CAS  Google Scholar 

  21. Lu G, Chen X, Yao JM, Li W, Zhang G, Zhao DY, Yang B, Shen JC. Fabricating ordered voids in a colloidal crystal film-substrate system by using organic liquid patterns as templates. Adv Mater, 2002, 14(24): 1799–1802

    Article  CAS  Google Scholar 

  22. Li W, Nie Y, Zhang J, Zhu DF, Li X, Sun HZ, Yu K, Yang B. Formation of ordered two-dimensional polymer latticeworks with polygonal meshes by self-organized anisotropic mass transfer. Macromol Chem Phys, 2008, 209(3): 247–257

    Article  CAS  Google Scholar 

  23. Chen ZM, Gang T, Yan X, Li X, Zhang JH, Wang YF, Chen X, Sun ZQ, Zhang K, Zhao B, Yang B. Ordered silica microspheres unsymmetrically coated with Ag nanoparticles and Ag-nanoparticle-doped polymer voids fabricated by microcontact printing and chemical reduction. Adv Mater, 2006, 18(7): 924–929

    Article  CAS  Google Scholar 

  24. Li W, Nie Y, Zhang J, Wang Z, Zhu DF, Lin Q, Yang B, Wang Y. Fabricating a binary pattern of ordered two-dimensional luminescent (mdppy) BF arrays by dewetting. J Mater Chem, 2006, 16(22): 2135–2141

    Article  CAS  Google Scholar 

  25. Ren ZY, Li X, Zhang JH, Li W, Zhang XM, Yang B. Tunable two-dimensional non-close-packed microwell arrays using colloidal crystals as templates. Langmuir, 2007, 23(15): 8272–8276

    Article  CAS  Google Scholar 

  26. Gao XF, Yan X, Yao X, Xu L, Zhang K, Zhang JH, Yang B, Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater, 2007, 19(17): 2213–2217

    Article  CAS  Google Scholar 

  27. Ren ZY, Zhang XM, Zhang JH, Li X, Pan XQ, Fei X, Cui ZC, Yang B. Assembly of non-close-packed 3D colloidal crystals from 2D ones in a polymer matrix via in situ layer-by-layer photopolymerization. J Mater Chem, 2008, 18(30): 3536–3538

    Article  CAS  Google Scholar 

  28. Wang YF, Zhang JH, Chen XL, Li X, Sun ZQ, Zhang K, Wang DY, Yang B. Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays. J Colloid Interf Sci, 2008, 322(1): 327–332

    Article  CAS  Google Scholar 

  29. Wang YF, Chen XL, Zhang JH, Sun ZQ, Li YF, Zhang K, Yang B. Fabrication of surface-patterned and free-standing ZnO nanobowls. Colloids Surf A, 2008, 329(3): 184–189

    Article  CAS  Google Scholar 

  30. Zhang XM, Zhang JH, Ren ZY, Li X, Zhang X, Zhu D, Wang T, Tian T, Yang B. Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir, 2009, 25(13): 7375–7382

    Article  CAS  Google Scholar 

  31. Yao TJ, Wang CX, Lin Q, Li X, Chen X, Wu J, Zhang J, Yu K, Yang B. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. Nanotechnology, 2009, 20(6): No.065304

    Article  Google Scholar 

  32. Ren ZY, Zhang XM, Zhang JH, Li X, Yang B. Building cavities in microspheres and nanospheres. Nanotechnology, 2009, 20(6): No. 065305

    Google Scholar 

  33. Wang TQ, Li X, Zhang JH, Ren ZY, Zhang XM, Zhang X, Zhu DF, Wang ZH, Hang F, Wang XZ, Yang B. Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. J Mater Chem, 2010, 20(1): 152–158

    Article  CAS  Google Scholar 

  34. Li YF, Zhang JH, Zhu SJ, Dong H, Jia F, Wang Z, Tang Y, Zhang L, Zhang S, Yang B. Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography. Langmuir, 2010, 26(12): 9842–9847

    Article  CAS  Google Scholar 

  35. Li X, Wang TQ, Zhang JH, Yan X, Zhang X, Zhu D, Li W, Zhang X, Yang B. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography. Langmuir, 2010, 26(4): 2930–2936

    Article  CAS  Google Scholar 

  36. Zhu DF, Li X, Zhang G, Zhang X, Zhang X, Wang T, Yang B. A versatile approach to fabricate ordered heterogeneous bull’s-eye-like microstructure arrays. Langmuir, 2010, 26(7): 5172–5178

    Article  CAS  Google Scholar 

  37. Yao TJ, Li X, Lin Q, Wu J, Ren ZY, Wang CX, Zhang JH, Yu K, Yang B. Patterns of conducting polypyrrole with tunable morphologies. Polymer, 2009, 50(16): 3938–3942

    Article  CAS  Google Scholar 

  38. Yao TJ, Wang CX, Wu J, Lin Q, Lv H, Zhang K, Yu K, Yang B. Preparation of raspberry-like polypyrrole composites with applications in catalysis. J Colloid Interf Sci, 2009, 338(2): 573–577

    Article  CAS  Google Scholar 

  39. Li YF, Zhang JH, Zhu SJ, Dong H, Jia F, Wang ZH, Sun ZQ, Zhang L, Li Y, Li HB, Xu WQ, Yang B. Biomimetic surfaces for high-performance optics. Adv Mater, 2009, 21(46): 4731–4734

    CAS  Google Scholar 

  40. Li YF, Li F, Zhang JH, Wang C, Zhu S, Yu H, Wang Z, Yang B. Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Appl Phys Lett, 2010, 96(15): 153305

    Article  Google Scholar 

  41. Li YF, Zhang JH, Zhu SJ, Dong H, Wang Z, Sun ZQ, Guo JR, Yang B. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. J Mater Chem, 2009, 19(13): 1806–1810

    Article  CAS  Google Scholar 

  42. Zhang XM, Zhang JH, Ren ZY, Zhang X, Tian T, Wang Y, Dong F, Yang B. Photoinduced cleaning of water-soluble dyes on patterned superhydrophilic/superhydrophobic substrates. Nanoscale, 2010, 2(2): 277–281

    Article  CAS  Google Scholar 

  43. Li YF, Zhang JH, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 2010, 5(2): 117–127

    Article  Google Scholar 

  44. Li X, Wang TQ, Zhang JH, Zhu D, Zhang X, Ning Y, Zhang H, Yang B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano, 2010, 4(8): 4350–4360

    Article  CAS  Google Scholar 

  45. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987, 58(20): 2059–2062

    Article  CAS  Google Scholar 

  46. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett, 1987, 58(23): 2486–2489

    Article  CAS  Google Scholar 

  47. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897–1899

    Article  CAS  Google Scholar 

  48. Ramesh S, Minti H, Reisfeld R, Gedanken A. Synthesis and optical properties of europium oxide nanoparticles immobilized on amorphous silica microspheres. Opt Mater, 1999, 13(1): 67–70

    Article  CAS  Google Scholar 

  49. Park SH, Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir, 1999, 15(1): 266–273

    Article  CAS  Google Scholar 

  50. Sun S, Murray B, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989–1992

    Article  CAS  Google Scholar 

  51. Chang SY, Liu L, Asher SA. Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites. J Am Chem Soc, 1994, 116(15): 6739–6744

    Article  CAS  Google Scholar 

  52. Holtz JH, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389(6653): 829–832

    Article  CAS  Google Scholar 

  53. Holtz JH, Holtz JSW, Munro CH, Sanford A. Intelligent polymerized crystalline colloidal arrays: Novel chemical sensor materials. Anal Chem, 1998, 70(4): 780–791

    Article  CAS  Google Scholar 

  54. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B, 1999, 103(19): 3854–3863

    Article  CAS  Google Scholar 

  55. Deckman HW, Dunsmuir JH. Natural lithography. Appl Phys Lett, 1982, 41(4): 377–379

    Article  CAS  Google Scholar 

  56. Zhang G, Wang DY. Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography. J Am Chem Soc, 2008, 130(17): 5616–5617

    Article  CAS  Google Scholar 

  57. Hoogenboom JP, Vossen DLJ, van Blaaderen A. Patterning surfaces with colloidal particles using optical tweezers. Appl Phys Lett, 2002, 80(25): 4828–4830

    Article  CAS  Google Scholar 

  58. Demers LM, Mirkin CA. Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew Chem Int Ed, 2001, 40(16): 3069–3071

    Article  CAS  Google Scholar 

  59. Junno T, Deppert K, Montelius L, Samuelson L. Controlled manipu lation of nanoparticles with an atomic force microscope. Appl Phys Lett, 1995, 66(26): 3627–3629

    Article  CAS  Google Scholar 

  60. Srinivasarao M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem Rev, 1999, 99(7): 1935–1962

    Article  CAS  Google Scholar 

  61. Miller WH, Bernard GD, Allen JL. The optics of insect compound eyes. Science, 1968, 162(3855): 760–767

    Article  CAS  Google Scholar 

  62. Vukusic P, Sambles JR. Photonic structures in biology. Nature, 2003, 424: 852–855

    Article  CAS  Google Scholar 

  63. Min WL, Betancourt AP, Jiang P. Bioinspired broadband antireflection coatings on GaSb. Appl Phys Lett, 2008, 92(14): 141109

    Article  Google Scholar 

  64. Chen HL, Chuang SY, Lin CH, Lin YH. Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. Opt Express, 2007, 15(22): 14793–14803

    Article  CAS  Google Scholar 

  65. Sun CH, Jiang P, Jiang B. Broadband moth-eye antireflection coatings on silicon. Appl Phys Lett, 2008, 92(6): 061112

    Article  Google Scholar 

  66. Wilson SJ, Hutley MC. The optical properties of’ moth eye’ antireflection surfaces. Opt Acta, 1982, 29(7): 993–1009

    Google Scholar 

  67. Vlasov YA, Bo X, Sturm JC, Norrios DJ. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414: 289–293

    Article  CAS  Google Scholar 

  68. Xia YN. Photonic crystals. Adv Mater, 2001, 13(6): 369

    Article  CAS  Google Scholar 

  69. Fischer UC, Zingsheim HP. Submicroscopic pattern replication with visible light. J Vac Sci Technol, 1981, 19(4): 881–885

    Article  CAS  Google Scholar 

  70. Hulteen JC, Van Duyne RP. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A, 1995, 13(3): 1553–1558

    Article  Google Scholar 

  71. Sun FQ, Cai WP, Li Y, Cao B, Lu F, Duan G, Zhang L. Morphology control and transferability of ordered through-pore arrays based on electrodeposition and colloidal monolayers. Adv Mater, 2004, 16(13): 1116–1121

    Article  CAS  Google Scholar 

  72. Sun ZQ, Yang B. Fabricating colloidal crystals and construction of ordered nanostructures. Nanoscale Res Lett, 2006, 1(1): 46–56

    Article  Google Scholar 

  73. Chen X, Sun ZQ, Chen ZM, Zhang K, Yang B. Two-substrate vertical deposition for stable colloidal crystal chips. Chinese Sci Bull, 2005, 50(8): 765–769

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhiQiang Sun or Bai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Yang, B. Preparation and potential application of functional ordered microstructures. Sci. China Chem. 54, 275–285 (2011). https://doi.org/10.1007/s11426-010-4195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4195-5

Keywords

Navigation