Skip to main content
Log in

Dimeric quinacridone cyclophanes: Synthesis, structures, and photophysical properties

  • Articles
  • Special Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two novel quinacridone (QA) cyclophanes with intrinsic intramolecular dye-dye interactions have been designed and synthesized. X-ray crystal structures as well as detailed photophysical properties have been well demonstrated. These two dyes have a major advantage that efficient fluorescence quenching can be observed even in their dilute solutions. A comparison of photophysical properties between the dimeric QA cyclophane and its reference monomeric counterpart indicates that the dimerization is predominant for the fluorescence quenching of QA dyes in solution. This study provided some model QA derivatives with dimeric structures for understanding the fluorescence quenching of QA dyes in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiramoto M, Kawase S, Yokoyama M. Photoinduced hole injection multiplication in p-type quinacridone pigment films. Jpn J Appl Phys, 1996, 35: L349–L351

    Article  CAS  Google Scholar 

  2. Shichiri T, Suezaki M, Inoue T. Three-layer organic solar cell. Chem Lett, 1992, 1717–1720

  3. Nakahara H, Kitahara K, Nishi H, Fukuda K. Orientation control of quinacridone derivatives with long alkyl chains in Langmuir-Blodgett films. Chem Lett, 1992, 711–714

  4. Nakahara H, Fukuda K, Ikeda M, Kitahara K, Nishi H. Langmuir-Blodgett films of polyheterocyclic compounds with long alkyl chains. Thin Solid Films, 1992, 210/211: 555–558

    Article  Google Scholar 

  5. Chen JJ-A, Chen TL, Kim B, Poulsen DA, Mynar JL, Fréchet JMJ, Ma B. Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells. Appl Mater Interf, 2010, 2: 2679–2686

    Article  CAS  Google Scholar 

  6. Pho TV, Zalar P, Garcia A, Nguyen TQ, Wudl F. Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives. Chem Commun, 2010, 46: 8210–8212

    Article  CAS  Google Scholar 

  7. Keller U, Müllen K, De Feyter S, De Schryver FC. Hydrogen-bonding and phase-forming behavior of a soluble quinacridone. Adv Mater, 1996, 8: 490–496

    Article  CAS  Google Scholar 

  8. Feyter SD, Gesquière A, De Schryver FC, Keller U, Müllen K. Aggregation properties of soluble quinacridones in two and three dimensions. Chem Mater, 2002, 14: 989–997

    Article  Google Scholar 

  9. Shaheen SE, Kippelen B, Peyghambarian N, Wang JF, Anderson JD, Mash EA, Lee PA, Armstrong NR, Kawabe YJ. Energy and charge transfer in organic light-emitting diodes: A soluble quinacridone study. Appl Phys, 1999, 85: 7939–7945

    Article  CAS  Google Scholar 

  10. Flora WH, Hall HK, Armatrong NR. Guest emission processes in doped organic light-emitting diodes: Use of phthalocyanine and naphthalocyanine near-IR dopants. J Phys Chem B, 2003, 107: 1142–1150

    Article  CAS  Google Scholar 

  11. Freeman AW, Koene SC, Malenfant PRL, Thompson ME, Frechet JMJ. Dendrimer-containing light-emitting diodes: Toward site-isolation of chromophores. J Am Chem Soc, 2000, 122: 12385–12386

    Article  CAS  Google Scholar 

  12. Shi J, Tang CW. Doped organic electroluminescent devices with im proved stability. Appl Phys Lett, 1997, 70: 1665–1667

    Article  CAS  Google Scholar 

  13. Bi H, Ye KQ, Zhao YF, Yang Y, Liu Y, Wang Y. Fluorinated quinacridone derivitives based organic light-emitting device with high power efficiency. Org Electron, 2010, 11: 1180–1184

    Article  CAS  Google Scholar 

  14. Aziz H, Popovic ZD, Hu NX. Organic light emitting devices with enhanced operational stability at elevated temperatures. Appl Phys Lett, 2002, 81: 370–372

    Article  CAS  Google Scholar 

  15. Gross EM, Anderson JD, Slaterbeck AF, Thayumanavan S, Barlow S, Zhang Y, Marder SR, Hall HK, Nabor MF, Wang JF, Mask EA, Armstrong NR, Wightman RM. Electrogenerated chemiluminescence from derivatives of aluminum quinolate and quinacridones: Crossreactions with triarylamines lead to singlet emission through triplettriplet annihilation pathways. J Am Chem Soc, 2000, 122: 4972–4979

    Article  CAS  Google Scholar 

  16. Ortiz A, Flora WH, D’Ambruoso GD, Armstrong NR, McGrath DV. Dendritic incorporation of quinacridone: Solubility, electrochemistry, and solid state luminescence. Chem Commun, 2005, 444–446

  17. Qiu D, Ye K, Wang Y, Zhou B, Zhang X, Lei SB, Wan LJ. In situ scanning tunneling microscopic investigation of the two-dimensional ordering of different alkyl chain-substituted quinacridone derivatives at highly oriented pyrolytic graphite/solution interface. Langmuir, 2003, 19: 678–681

    Article  CAS  Google Scholar 

  18. Mu Z, Wang Z, Zhang X, Ye K, Wang Y. Influence of substituents on two-dimensional ordering of oligo(phenylene-ethynylene)s — A scanning tunneling microscopy study. Langmuir, 2004, 20: 8892–8896

    Article  CAS  Google Scholar 

  19. Lin FD, Zhong Y, Chi LF, Ye K, Wang Y, Fuchs H. Temperaturetuned organic monolayer growth: N,N-di(n-butyl)quinacridone on Ag(110). Phys Rev B, 2006, 73: 235420

    Article  Google Scholar 

  20. Zhao Y, Fan Y, Mu X, Gao H, Wang J, Zhang J, Yang W, Chi L, Wang Y. Self-assembly of luminescent twisted fibers based on achiral quinacridone derivatives. Nano Res, 2009, 2: 493–499

    Article  CAS  Google Scholar 

  21. Ye K, Wang J, Sun H, Liu Y, Mu Z, Li F, Jiang S, Zhang J, Zhang H, Wang Y, Che C. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J Phys Chem B, 2005, 109: 8008–8016

    Article  CAS  Google Scholar 

  22. Yu D, Peng T, Zhang H, Bi H, Zhang J, Wang Y. Basket-shaped quinacridone cyclophanes: Synthesis, solid-state structures, and properties. New J Chem, 2010, 34: 2213–2219

    Article  CAS  Google Scholar 

  23. Wang J, Zhao YF, Dou CD, Sun H, Xu P, Ye KQ, Zhang JY, Jiang SM, Li F, Wang Y. Alkyl and dendron substituted quinacridones: Synthesis, structures, and luminescent. J Phys Chem B, 2007, 111: 5082–5089

    Article  CAS  Google Scholar 

  24. Wang J, Zhao YF, Zhang JH, Zhang JY, Yang B, Wang Y, Zhang DK, You H, Ma DG. Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives. J Phys Chem C, 2007, 111: 9177–9183

    Article  CAS  Google Scholar 

  25. Wang W, Han JJ, Wang LQ, Li LS, Shaw WJ, Li ADQ. Dynamic — stacked molecular assemblies emit from green to red colors. Nano Lett, 2003, 3: 455–458

    Article  CAS  Google Scholar 

  26. Lewis FD, Wu T, Burch EL, Bassani DM, Yang JS, Schneider S, Jäger W, Letsinger RL. Hybrid oligonucleotides containing stilbene units excimer fluorescence and photodimerization. J Am Chem Soc, 1995, 117: 8785–8792

    Article  CAS  Google Scholar 

  27. Liang K, Farahat MS, Perlstein J, Law KY, Whitten DG. Exciton interactions in nonconjugated squaraine dimers. Mechanisms for coupling and consequences for photophysics and photochemistry. J Am Chem Soc, 1997, 119: 830–831

    Article  CAS  Google Scholar 

  28. Ros-Lis JV, Martínez-Máñez R, Soto J. Colorimetric signaling of large aromatic hydrocarbons via the enhancement of aggregation processes. Org Lett, 2005, 7: 2337–2339

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JingYing Zhang or Yue Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Peng, T., Javad, I. et al. Dimeric quinacridone cyclophanes: Synthesis, structures, and photophysical properties. Sci. China Chem. 54, 314–319 (2011). https://doi.org/10.1007/s11426-010-4194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4194-6

Keywords

Navigation