Skip to main content
Log in

Surface-grafted block copolymer brushes with continuous composition gradients of poly(poly(ethylene glycol)-monomethacrylate) and poly(N-isopropylacrylamide)

  • Articles
  • Special Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by integration of the surface-initiated atom transfer radical polymerization (SI-ATRP) and continuous injection method. Three types of copolymer gradients were prepared: (1) a uniform P(PEGMA) layer was block copolymerized with a gradient PNIPAAm layer (PP1); (2) a gradient P(PEGMA) layer was block copolymerized with a uniform PNIPAAm layer (PP2); and (3) a gradient P(PEGMA) layer was inversely block copolymerized with a gradient PNIPAAm layer (PP3). The as-prepared gradients were characterized by ellipsometry, water contact angle and atomic force microscopy (AFM) to determine their alterations in thickness, surface wettability and morphology, confirming the gradient structures. In vitro culture of HepG2 cells was implemented on the gradient surfaces, revealing that the cells could adhere at 37 °C and be detached at 20 °C. Introduction of the PEG chains as an underlying layer on the PNIPAAm grafting surfaces resulted in faster cell detachment compared with the PNIPAAm grafting surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai W, Peck JR, van der Weide DW, Hamers RJ. Direct electrical detection of hybridization at DNA-modified silicon surface. Biosens Bioelectron, 2004, 19: 1013–1019

    Article  CAS  Google Scholar 

  2. Cattani-Scholz A, Pedone D, Blobner F, Abstreiter G, Schwartz J, Tornow M. Andruzzi, L. PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Biomacromolecules, 2009, 10: 489–496

    Article  CAS  Google Scholar 

  3. Tao F, Xu GQ. Attachment chemistry of organic molecules on Si(111)-7×7. Acc Chem Res, 2004, 37: 882–893

    Article  CAS  Google Scholar 

  4. Buriak JM. Organometallic chemistry on silicon and germanium surfaces. Chem Rev, 2002, 102: 1271–1308

    Article  CAS  Google Scholar 

  5. Qiao YH, Wang D, Buriak JM. Block copolymer templated etching on silicon. Nano Lett, 2007, 7: 464–469

    Article  CAS  Google Scholar 

  6. Urbach B, Korbakov N, Bar-David Y, Yitzchaik S, Sa’ar A. Composite structures of polyaniline and mesoporous silicon: Electrochemistry, optical and transport properties. J Phys Chem C, 2007, 111: 16586–16592

    Article  CAS  Google Scholar 

  7. Létant SE, Sailor MJ. Molecular identification by time resolved interferometry in a porous silicon film. Adv Mater, 2001, 13: 335–338

    Article  Google Scholar 

  8. Wróblewski W, Dybko A, Malinowska E, Brzózka Z. Towards advanced chemical microsensors-A review. Talanta, 2004, 63: 33–39

    Article  Google Scholar 

  9. Bergbreiter DE, Kippenberger AM, Lackowski WM. New systhesies of hyperbranched polyamine grafts. Macromolecules, 2005, 38: 47–52

    Article  CAS  Google Scholar 

  10. Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y. Polymer surface with graft chains. Prog Polym Sci, 2003, 28: 209–259

    Article  CAS  Google Scholar 

  11. Granville AM, Boyes SG, Akgun B, Foster MD, Brittain WJ. Synthesis and characterization of stimuli-responsive semifluorinated polymer brushes prepared by atom transfer radical polymerization. Macromolecules, 2004, 37: 2790–2796

    Article  CAS  Google Scholar 

  12. Ejaz M, Yamamoto S, Tsujii Y, Fukuda T. Fabrication of patterned high-density polymer graft surfaces. 1. Amplification of phase-separated morphology of organosilane blend monolayer by surface-initiated atom transfer radical polymerization. Macromolecules, 2002, 35: 1412–1418

    Article  CAS  Google Scholar 

  13. Edmondson S, Huck WTS. Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers. J Mater Chem, 2004, 14: 730–734

    Article  CAS  Google Scholar 

  14. Yu WH, Kang ET, Neoh KG. Controlled grafting of well-defind polymers on hydrogen-terminated silicon substrates by surface-initiated atom transfer radical polymerization. J Phys Chem B, 2003, 107: 10198–10205

    Article  CAS  Google Scholar 

  15. Zhao B, He T. Synthesis of well-defined mixed poly(methyl methacrylate)/polystyrene brushes form an asymmetric difunctional initiator-terminated self-assembled monolayer. Macromolecules, 2003, 36: 8599–8602

    Article  CAS  Google Scholar 

  16. Boyes SG, Brittain WJ, Weng X, Cheng ZD. Synthesis, characterization, and properties of ABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization. Macromolecules, 2002, 35: 4960–4967

    Article  CAS  Google Scholar 

  17. Wang JY, Chen W, Liu AH, Lu G, Zhang G, Zhang JH, Yang B. Controlled fabrication of cross-linked nanoparticles/polymer composite thin films through the combined use of surface-initiated atom transfer radical polymerization and gas/solid reaction. J Am Chem Soc, 2002, 124: 13358–13359

    Article  CAS  Google Scholar 

  18. Edmondson S, Osborne VL, Huck WT. Polymer brushes via surfaceinitiated polymerizations. Chem Soc Rev, 2004, 33: 14–22

    Article  CAS  Google Scholar 

  19. Mori H, Boker A, Krausch G, Müller AHE. Surface-grafted hyperbranched polymers via self-condensing atom transfer radical polymerization from silicon surfaces. Macromolecules, 2001, 34: 6871–6882

    Article  CAS  Google Scholar 

  20. Maeng IS, Park JW. Formation of rectangular poly(methyl methacrylate) micropattern onto a polystyrene brush with use of ATRP and electron beam irradiation. Langmuir, 2003, 19: 9973–9976

    Article  CAS  Google Scholar 

  21. Tomlinson MR, Genzer J. Formation of grafted macromolecular assemblies with a gradual variation of molecular weight on solid substrates. Macromolecules, 2003, 36: 3449–3451

    Article  CAS  Google Scholar 

  22. Tomlinson MR, Genzer J. Formation of surface-grafted copolymer brushes with continuous composition gradients. Chem Commun, 2003, 12: 1350–1351

    Article  Google Scholar 

  23. Blondiaux N, Zürcher S, Liley M, Spencer ND. Fabrication of multiscale surface-chemical gradients by means of photocatalytic lithography. Langmuir, 2007, 23: 3489–3494

    Article  CAS  Google Scholar 

  24. Ding YX, Streitmatter S, Wright BE, Hlady Vladimir. Spatial variation of the change and sulfur oxidation state in a surface gradient affects plasma protein adsorption. Langmuir, 2010, 26: 12140–12146

    Article  CAS  Google Scholar 

  25. Wu T, Efimenko K, Vlček P, Šubr V, Genzer J. Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates. Macromolecules, 2003, 36: 2448–2453

    Article  CAS  Google Scholar 

  26. Wu T, Gong P, Szleifer I, Vlček P, Šubr V, Genzer J. Behavior of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates. Macromolecules, 2007, 40: 8756–8764

    Article  CAS  Google Scholar 

  27. Cao H, Tegenfeldt JO, Austin RH, Chou SY. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl Phys Lett, 2002, 81: 3058–3060

    Article  CAS  Google Scholar 

  28. Bhat RR, Tomlinson MR, Genzer J. Assembly of nanoparticles using surface-grafted orthogonal polymer gradients. Macromol Rapid Commun, 2004, 25: 270–274

    Article  CAS  Google Scholar 

  29. Wu T, Efimenko K, Genzer J. Combinatorial study of the mushroomto-brush crossover in surface anchored polyacrylamide. J Am Chem Soc, 2002, 124: 9394–9395

    Article  CAS  Google Scholar 

  30. Zhao B. A combinatorial approach to study solvent-induced self-assembly of mixed poly(methyl methacrylate)/polystyrene brushes on planar silica substrates: effect of relative grafting density. Langmuir, 2004, 20: 11748–11755

    Article  CAS  Google Scholar 

  31. Xu C, Wu T, Drain CM, Batteas JD, Beers KL. Microchannel confined surface-initiated polymerization. Macromolecules, 2005, 38: 6–8

    Article  CAS  Google Scholar 

  32. Ionov L, Sidorenko A, Stamm M. Gradient mixed brushes: “Grafting to” approach. Macromolecules, 2004, 37: 7421–7423

    Article  CAS  Google Scholar 

  33. Liu Y, Klep V, Zdyrko B, Luzinov I. Synthesis of high-density grafted polymer layers with thickness and grafting density gradients. Langmuir, 2005, 21: 11806–11813

    Article  CAS  Google Scholar 

  34. Bhat RR, Genzer J, Chaney BN, Sugg HW, Liebmann-Vinson A. Contolling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. Nanotechnology, 2003, 14: 1145–1152

    Article  CAS  Google Scholar 

  35. Kong XX, Kawai T, Abe J, Iyoda T. Amphiphilic polymer brushes grown from the silicon surface by atom transfer radical polymerization. Macromolecules, 2001, 34: 1837–1844

    Article  CAS  Google Scholar 

  36. Teo BM, Prescott SW, Price GJ, Grieser F, Ashokkumar M. Synthesis of temperature responsive poly(N-isopropylacrylamide) using ultrasound irradiation. J Phys Chem B, 2010, 114:3178–3184

    Article  CAS  Google Scholar 

  37. Balamurugan S, Mendez S, Balamurugan SS, O’Brien II, López GP. Thermal response of poly(N-isopropylacrylamide) brushes probed by surface plasmon resonance. Langmuir, 2003, 19: 2545–2549

    Article  CAS  Google Scholar 

  38. Dhayal M, Jeong HG, Choi JS. Use of plasma polymerization process for fabrication of bio-MEMS for micro-fluidic devices. Appl Surf Sci, 2005, 252: 1710–1715

    Article  CAS  Google Scholar 

  39. Shah RR, Mecerreyes D, Husemann M, Rees I, Abbott NL, Hawker CJ, Hedrick JL. Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules, 2000, 33: 597–608

    Article  CAS  Google Scholar 

  40. Granville AM, Boyes SG, Akgun B. Sysnthesis and characterization of stimuli-responsive semifluorinated polymer brushes prepared by atom transfer radical polymerization. Macromolecules, 2004, 37: 2790–2796

    Article  CAS  Google Scholar 

  41. Yu WH, Kang ET, Neoh KG. Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surfaceinitiated ATRP at ambient temperature. Langmuir, 2004, 20: 8294–8300

    Article  CAS  Google Scholar 

  42. Benhabbour SR, Liu L, Sheardown H, Adronov A. Protein resistance of surfaces prepared by chemisorption of monothiolated poly(ethylene glycol) to gold and dendronization with aliphatic polyester dendrons: Effects of hydrophilic dendrons. Macromolecules, 2008, 41: 2567–2576

    Article  CAS  Google Scholar 

  43. Mougin K, Ham AS, Lawrence MB, Fernandez EJ, Hillier AC. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics. Langmuir, 2005, 21: 4809–4812

    Article  CAS  Google Scholar 

  44. Thissen H, Gengenbach T, du Toit R, Sweeney DF, Kingshott P, Griesser HJ, Meagher L. Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials, 2010, 31: 5510–5519

    Article  CAS  Google Scholar 

  45. Shah SS, Howland MC, Chen LJ, Silangcruz J, Verkhoturov SV, Schweikert EA, Parikh AN, Revzin A. Micropatterning of proteins and mammalian cells on indium tin oxide. Appl Mater Interfaces, 2009, 1: 2592–2601

    Article  CAS  Google Scholar 

  46. Beyer M, Felgenhauer T, Bischoff FR, Breitling F, Stadler Volker. A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials, 2006, 27: 3505–3514

    Article  CAS  Google Scholar 

  47. Huang WX, Baker GL, Bruening ML. Controlled synthesis of cross-linked ultrathin polymer films by using surface-initiated atom transfer radical polymerization. Angew Chem Int Ed Engl, 2001, 40: 1510–1512

    Article  CAS  Google Scholar 

  48. Huang WX, Kim JB, Bruening ML, Baker GL. Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules, 2002, 35: 1175–1179

    Article  CAS  Google Scholar 

  49. Li LH, Zhu Y, Li B, Gao CY. Fabrication of thermoresponsive polymer gradients for study of cell adhesion and detachment. Langmuir, 2008, 24: 13632–13639

    Article  CAS  Google Scholar 

  50. Haller I. Covalently attached organic monolayers on semiconductor surface. J Am Chem Soc, 1978, 100: 8050–8055

    Article  CAS  Google Scholar 

  51. Yum K, Yu MF. Measurement of wetting properties of individual boron nitride nanotubes with the wilhelmy method using a nanotubebased force sensor. Nano Lett, 2006, 6: 329–333

    Article  CAS  Google Scholar 

  52. Liu X, Lim JY, Donahue HJ, Dhurjati R, Mastro AM, Vogler EA. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. Biomaterials, 2007, 28: 4535–4550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangYou Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wu, J. & Gao, C. Surface-grafted block copolymer brushes with continuous composition gradients of poly(poly(ethylene glycol)-monomethacrylate) and poly(N-isopropylacrylamide). Sci. China Chem. 54, 334–342 (2011). https://doi.org/10.1007/s11426-010-4192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4192-8

Keywords

Navigation