Skip to main content
Log in

Electrocatalytic oxidation of GMP on an ITO electrode modified by the photodeposition of Pd nanoparticles onto a monolayer TiO2 nanosheets/[Ru(phen)2(dC18bpy)]2+ hybrid film

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An indium tin oxide (ITO) electrode coated with monolayer TiO2/[Ru(phen)2(dC18bpy)]2+ (phen = 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′-bipyridyl) hybrid film (denoted as ITO/TiO2-Ru) has been prepared using the modified Langmuir-Blodgett (LB) method, and the electrocatalytic oxidation of mononucleotide of guanosine 5′-monophosphate (GMP) on an ITO/TiO2-Ru electrode after Pd-photodeposition (denoted as ITO/TiO2-Ru/Pd) has been studied. Atomic force microscopy reveals that the single-layered hybrid film of TiO2 nanosheets/[Ru(phen)2(dC18bpy)]2+ is closely packed at a surface pressure of 25 mN m−1 and has a thickness of (3.20 ± 0.5) nm. X-ray photoelectron spectra show the formation of Pd nanoparticles on the surface of hybrid film with radii of 20–200 nm by the reduction of [Pd(NH3)4]2+ under light irradiation. When it is applied to oxidize GMP, a larger catalytic oxidative current is achieved on the ITO/TiO2-Ru/Pd electrode at the external potential above 700 mV (vs. Ag|AgCl|KCl) in comparison with the naked ITO electrode and ITO/TiO2-Ru electrode. Such a result indicates that the Pd nanoparticles are able to hamper the combination of electron hole pairs and reduce the counterwork of insulating long alkyl chains of amphiphilic Ru(II) complexes, and thus develops the electron transfer efficiency and produces the enhanced redox current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Janos HF. Nanoparticle, Nanostructured Films. New York: Weinheim

  2. Bard AJ, Faulkner LR. Electrochemical Method: Fundamentals and Applications. 2nd ed. New York: John Wiley & Sons, 2001

    Google Scholar 

  3. Kleinfeld ER, Ferguson GS. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science, 1994, 265: 370–373

    Article  CAS  Google Scholar 

  4. Taguchi Y, Kimura R, Azumi R, Tachibana H, Koshizaki N, Shimomura M, Momozawa N, Sakai H, Abe M, Matsumoto M. Fabrication of hybrid layered films of MoS2 and an amphiphilic ammonium cation using the Langmuir-Blodgett technique. Langmuir, 1998, 14: 6550–6555

    Article  CAS  Google Scholar 

  5. Kuzmenko I, Rapaport H, Kjaer K, Als-Nielsen J, Weissbuch I, Lahav M, Leiserowitz L. Design and characterization of crystalline thin film architectures at the air-liquid interface: simplicity to complexity. Chem Rev, 2001, 101: 1659–1696

    Article  CAS  Google Scholar 

  6. He JX, Kobayashi K, Takahashi M, Villemure G, Yamagishi A. Preparation of hybrid films of an anionic Ru(II) cyanide polypyridyl complex with layered double hydroxides by the Langmuir-Blodgett method and their use as electrode modifiers. Thin Solid Films, 2001, 397: 255–265

    Article  CAS  Google Scholar 

  7. He JX, Yamagishi A, Iwao M, Abe Y, Umemura Y. Creation of a novel solid surface as a model photosynthetic system. II. Application of the LB and self-assembly methods to a fixation of a light-driven polypyridyl Ru(II) complex. Electrochem Comm, 2004, 6: 61–65

    Article  CAS  Google Scholar 

  8. He JX, Sato H, Umemura Y, Yamagishi A. Sensing of molecular chirality on an electrode modified with a clay-metal complex hybrid film. J Phys Chem B, 2005, 109: 4679–4683

    Article  CAS  Google Scholar 

  9. Zhou HH, Ning XH, Li SL, Chen JH, Kuang YF. Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 2006, 510: 164–168

    Article  CAS  Google Scholar 

  10. Aoki PHB, Volpati D, Riul JA, Caetano W, Constantino CJL. Layer-by-layer technique as a new approach to produce nanostructured films containing phospholipids as transducers in sensing applications. Langmuir, 2009, 25: 2331–2338

    Article  CAS  Google Scholar 

  11. Gosh PK, Bard AJ. Clay-modified electrodes. J Am Chem Soc, 1983, 105: 5691–5693

    Article  Google Scholar 

  12. Navrátilová Z, Kula P. Clay modified electrodes: present applications and prospects. Electroanalysis, 2003, 15: 837–846

    Article  Google Scholar 

  13. Song C, Villemure G. Preparation of clay-modified electrodes by electrophoretic deposition of clay films. J Electroanal Chem, 1999, 462: 143–149

    Article  CAS  Google Scholar 

  14. Ulman A. An Introduction to Ultrathin Organic Films. San Diego: Acadmic Press, 1991

    Google Scholar 

  15. Petty MC. Langmuir-Blodggett Films. Cambridge: Cambridge University, 1996

    Book  Google Scholar 

  16. Roubeau O, Natividad E, Agricole B, Ravaine S. Formation, structure, and morphology of triazole-based Langmuir-Blodgett films. Langmuir, 2007, 23: 3110–3117

    Article  CAS  Google Scholar 

  17. Qaqish SE, Matthew FP. Mechanistic Insight into domain formation and growth in a phase-separated Langmuir-Blodgett monolayer. Langmuir, 2007, 23: 10088–10094

    Article  CAS  Google Scholar 

  18. Laura J, Cote FK, Huang JX. Langmuir-blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131: 1043–1049

    Article  CAS  Google Scholar 

  19. Chang XQ, Wang S, Lin DJ, Guan WP, Zhou H, Huang SM. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC18bpy)]2+ hybrid film. Sci China Ser B-Chem, 2009, 52: 318–324

    Article  CAS  Google Scholar 

  20. Yoshida J, Saruwatari K, Kameda J, Sato H, Yamagishi A, Sun L, Corriea M, Villemure G. Electron transfer through clay monolayer films fabricated by the Langmuir-Bloddgett technique. Langmuir, 2006, 22: 9591–9597

    Article  CAS  Google Scholar 

  21. Sasaki T, Watanabe M, Hashizume H, Yamada H, Nakazawa H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J Am Chem Soc, 1996, 118: 8329

    Article  CAS  Google Scholar 

  22. Sasaki T, Watanabe M. Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties. J Phys Chem B, 1997, 101: 10159–10161

    Article  CAS  Google Scholar 

  23. He JX, Yang P, Sato H, Umemura Y, Yamagishi A. Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets. J Electroanal Chem, 2004, 566: 227–233

    Article  CAS  Google Scholar 

  24. Zhou H, Wang S, Lin JJ, Chen XA, Cai XQ, Wen HH, Jiang F. Enhanced photocurrent of an ITO electrode by the photoposition of Pt nanoclusters onto a monolayer TiO2-Ru complex hybrid film (in chinese). Acta Chimica Sinica, 2010, 68: 367–373

    CAS  Google Scholar 

  25. Jung CH, Sánchez-Sánchez CM, Lin CL, Rodríguez-Lopez J, Bard AJ. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Anal Chem, 2009, 81: 7003–7008

    Article  CAS  Google Scholar 

  26. Chu DB, Wang J, Wang SX, Zha LW, He JG, Hou YY, Lin HS, Tian ZW. High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun, 2009, 10: 955–958

    Article  CAS  Google Scholar 

  27. Lee H, Habas SE, Somorjai GA, Yang PD. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc, 2008, 130: 5406–5407

    Article  CAS  Google Scholar 

  28. Steidtner J, Hernandez F, Baltruschat H. Electrocatalytic reactivity of Pd monolayers and monatomic chains on Au. J Phys Chem C, 2007, 111: 12320–12327

    Article  CAS  Google Scholar 

  29. Tamura K, Setsuda H, Taniguchi M, Yamagishi A. Application of the Langmuir-Blodgett technique to prepare a clay-metal complex hybrid film. Langmuir, 1999, 15: 6915–6920

    Article  CAS  Google Scholar 

  30. Kapoor S. Preparation, characterization, and surface modification of silver particles. Langmuir, 1998, 14: 1021–1025

    Article  CAS  Google Scholar 

  31. He JX, Sato H, Umemura Y, Yamagishi A. Sensing of molecular charality on an electrode modified with a clay-metal complex hybrid film. J Phys Chem B, 2005, 109: 4679–4683

    Article  CAS  Google Scholar 

  32. Tura JM, Regull P, Victori L, Castellar MD. XPS and IR (ATR) analysis of Pd oxide films obtained by electrochemical methods. Surf Interface Anal, 1988, 11: 447–449

    Article  CAS  Google Scholar 

  33. Tressaud A, Khairoun S, Touhara H, Watanabe N. X-ray photoelectron spectroscopy of palladium fluorides. Z Anorg Allg Chem, 1986, 540: 291–299

    Article  Google Scholar 

  34. Shepherd RE, Proctor A, Henderson WW, Myser TK. Assessment of the π-acceptor capability of selected ligands based on the photoelectron spectra of ruthenium ammine complexes. Inorg Chem, 1987, 26: 2440–2444

    Article  CAS  Google Scholar 

  35. Khan MMT, Srivastava S. Some new ruthenium(III) schiff base complexes: A photoelectron spectroscopic study. Polyhedron, 1988, 7: 1063–1065

    Article  CAS  Google Scholar 

  36. Aarnik WAM, Weishaupt A, Silfout VA. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) and a modified Levenberg-Marquardt fit procedure: a new combination for modeling thin layers. Appl Surf Sci, 1990, 45: 37–48

    Article  Google Scholar 

  37. Taylor JA, Lancaster GM, Ignatiev A, Rabalais JW. Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides. J Chem Phys, 1978, 68: 1776–1785

    CAS  Google Scholar 

  38. Cahen D, Ireland PJ, Kazmerski LL, Thiel FA. X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CuInSe2 photoelectrodes. J Appl Phys, 1985, 57: 4761–4771

    Article  CAS  Google Scholar 

  39. Krause MO, Haire RG, Keski-Rahkonen O, Peterson JR. Photoelectron spectrometry of the actinides from Ac to Es. J Electron Spectrosc Relat Phenom, 1988, 47: 215–226

    Article  CAS  Google Scholar 

  40. Nyholm R, Martensson N. Core level binding energies for the elements Zr-Te. J Phys C: Solid State Phys, 1980, 13, L279–L284

    Article  CAS  Google Scholar 

  41. Dennis AM, Howard RA, Kadish KM, Bean JL, Brace J, Winograd N. X-ray photoelectron spectra of some dirhodium carboxylate complexes. Inorg Chim Acta, 1980, 44: L139–L141

    Article  CAS  Google Scholar 

  42. Staniewicz RJ, Sympson RF, Hendricker DG. Preparation and investigation of the spectral and electrochemical properties of mixed-ligand ruthenium(II) complexes containing 1,8-naphthyridines. Inorg Chem, 1977, 16: 2166–2171

    Article  CAS  Google Scholar 

  43. Kim BH, Lee DN, Park HJ, Min JH, Jun YM, Park SJ, Lee WY. Synthesis and characterization of electrochemiluminescent ruthenium( II) complexes containing o-phenanthroline and various α-diimine ligands. Talanta, 2004, 62: 595–602

    Article  CAS  Google Scholar 

  44. Yuan XX, Xu NX. Determination of hydrogen diffusion coefficient in metal hydride electrode by cyclic voltammetry. J Alloys Compd, 2001, 316: 113–117

    Article  CAS  Google Scholar 

  45. He JX, Kobayashi K, Chen YM, Villemure G, Yamagishi A. Electrocatalytic response of GMP on an ITO electrode modified with a hybrid film of Ni(II)-Al(III) layered double hydroxide and amphiphilic Ru(II) cyanide complex. Electrochem Comm, 2001, 3: 473–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, S., Lin, J. et al. Electrocatalytic oxidation of GMP on an ITO electrode modified by the photodeposition of Pd nanoparticles onto a monolayer TiO2 nanosheets/[Ru(phen)2(dC18bpy)]2+ hybrid film. Sci. China Chem. 54, 483–489 (2011). https://doi.org/10.1007/s11426-010-4190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4190-x

Keywords

Navigation