Skip to main content
Log in

Numerical simulation of immiscible liquid-liquid flow in microchannels using lattice Boltzmann method

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators. The two-phase flow lattice Boltzmann model was first validated and improved by several test cases of a still droplet. The five distinct flow regimes of the kerosene-water system, previously identified in the experiments from Zhao et al., were reproduced. The quantitative and qualitative agreement between the simulations and the experimental data show the effectiveness of the numerical method. The roles of the interfacial tension and contact angle on the flow patterns and shapes of droplets were discussed and highlighted according to the numerical results based on the improved two-phase LB model. This work demonstrated that the developed LBM simulator is a viable tool to study immiscible two-phase flows in microchannels, and such a tool could provide tangible guidance for the design of various microfluidic devices that involve immiscible multi-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cristini V, Tan YC. Theory and numerical simulation of droplet dynamics in complex flows—a review. Lab Chip, 2004, 4: 257–264

    Article  CAS  Google Scholar 

  2. Gunther A, Jensen KF. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip, 2006, 6: 1487–503

    Article  CAS  Google Scholar 

  3. Lomel S, Falk L, Commenge JM, Houzelot JL, Ramdani K. The microreactor: A systematic and efficient tool for the transition from batch to continuous process. Chem Eng Res Des, 2006, 84(A5): 1–7

    Google Scholar 

  4. Kiwi-Minsker L, Renken A. Micro-structured reactors for catalytic reactions. Catal Today, 2005, 110: 2–14

    Article  CAS  Google Scholar 

  5. Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys, 2007, 40: R319–R336

    Article  CAS  Google Scholar 

  6. Nisisako T, Torii T, Higuchi T. Droplet formation in a microchannel network. Lab Chip, 2002, 2: 24–26

    Article  CAS  Google Scholar 

  7. Wang K, Lu YC, Xu JH, Luo GS. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir, 2009, 25: 2153–2158

    Article  CAS  Google Scholar 

  8. Dessimoz AL, Cavin L, Renken A, Kiwi-Minsker L. Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass micro-reactors. Chem Eng Sci, 2008, 63: 4035–4044

    Article  CAS  Google Scholar 

  9. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL. Gas-liquid two-phase flow in microchannels, Part I: two-phase flow pattern. Int J Multiphase Flow, 1999, 25: 377–394

    Article  CAS  Google Scholar 

  10. Xu JL, Cheng P, Zhao TS. Gas-liquid two-phase flow regimes in rectangular channels with mini/microgaps. Int J Multiphase Flow, 1999, 25: 411–432

    Article  CAS  Google Scholar 

  11. Yu Z, Hemminger O, Fan LS. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels. Chem Eng Sci, 2007, 62: 7172–7183

    Article  CAS  Google Scholar 

  12. Takamasa T, Hazuku T, Hibiki T. Experimental study of gas-liquid two-phase flow affected by wall surface wettability. Int J Heat Fluid Flow, 2008, 29: 1593–1602

    Article  CAS  Google Scholar 

  13. Donata MF, Franz T, Philipp RVR. Segmented gas-liquid flow characterization in rectangular microchannels. Int J Multiphase Flow, 2008, 34: 1108–1118

    Article  Google Scholar 

  14. Pandey S, Gupta A, Chakrabarti DP, Das G, Ray S. Liquid-liquid two phase flow through a horizontal T-junction. Chem Eng Res Des, 2006, 84: 895–904

    Article  CAS  Google Scholar 

  15. Kashid MN, Agar DW. Hydrodynamics of liquid-liquid slug flow capillary micro-reactor: flow regimes, slug size and pressure drop. Chem Eng J, 2007, 131: 1–13

    Article  CAS  Google Scholar 

  16. Xu JH, Luo GS, Li SW, Chen GG. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab Chip, 2006, 6:131–136

    Article  CAS  Google Scholar 

  17. Zhao YC, Chen GW, Yuan Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J, 2006, 52: 4052–4060

    Article  CAS  Google Scholar 

  18. Zhao YC, Ying Y, Chen GW, Yuan Q. Characterization of micromixing in T-shaped micromixer (in Chinese). J Chem Ind Eng, 2006, 57: 1184–1190

    Google Scholar 

  19. Zhao YC, Chen GW, Yuan Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels. AIChE J, 2007, 53: 3042–3053

    Article  CAS  Google Scholar 

  20. Kobayashi I, Mukataka S, Nakajima M. Production of monodisperse oil-in-water emulsions using a large silicon straight through microchannel plate. Ind Eng Chem Res, 2005, 44: 5852–5856

    Article  CAS  Google Scholar 

  21. Zheng B, Tice JD, Ismagilov RF. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem, 2004, 76: 4977–4982

    Article  CAS  Google Scholar 

  22. Thorsen T, Roberts RW, Arnold FH, Quake SR. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett, 2001, 86: 4163–4166

    Article  CAS  Google Scholar 

  23. Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels. Phys Rev Lett, 2003, 90: 144505

    Article  Google Scholar 

  24. Tan J, Xu JH, Li SW, Luo GS. Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up. Chem Eng J, 2008, 136: 306–311

    Article  CAS  Google Scholar 

  25. Gong XC, Lu YC, Xiang ZY, Zhang YN, Luo GS. Preparation of uniform microcapsules with silicone oil as continuous phase in a microdispersion process. J Microencapsul, 2007, 24: 767–776

    Article  CAS  Google Scholar 

  26. Liow JL. Numerical simulation of drop formation in a T-shaped microchannel. 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 2004

  27. Shui LL, Eijkel JCT, van den Berg A. Multiphase flow in microfluidic systems—Control and applications of droplets and interfaces. Adv Colloid Interface Sci, 2007, 133: 35–49

    Article  CAS  Google Scholar 

  28. Shui LL, Eijkel JCT, van den Berg A. Multiphase flow in micro- and nano-channels. Sensors Actuators B, 2007, 121: 263–276

    Article  Google Scholar 

  29. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids. Phys Rev A, 1991, 43: 4320–4327

    Article  CAS  Google Scholar 

  30. Gunstensen AK, Rothman DH. A lattice-gas model for three immiscible fluids. Phys D: Nonlinear Phenomena, 1991, 47: 47–52

    Article  Google Scholar 

  31. Gunstensen AK, Rothman DH. A Galilean-invariant immiscible lattice gas. Phys D: Nonlinear Phenomena, 1991, 47: 53–63

    Article  Google Scholar 

  32. Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E, 1993, 47: 1815–1819

    Article  Google Scholar 

  33. Swift MR, Osborn WR, Yeomans JM. Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett, 1995, 75: 830–833

    Article  CAS  Google Scholar 

  34. Junseok K. A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl Math Comput, 2005, 160: 589–606

    Article  Google Scholar 

  35. Sankaranarayanan K, Kevrekidis IG, Sundaresan S, Lu J, Tryggvason GA. Comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations. Int J Multiphase Flow, 2003, 29: 109–116

    Article  CAS  Google Scholar 

  36. Sankaranarayanan K, Shan X, Kevrekidis IG, Sundaresan S. Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. J Fluid Mech, 2002, 452: 61–96

    Article  CAS  Google Scholar 

  37. Santos LOE, Facin PC, Philippi PC. Lattice-Boltzmann model based on field mediators for immiscible fluids. Phys Rev E, 2003, 68: 056302

    Article  CAS  Google Scholar 

  38. Santos LOE, Wolf FG, Philippi PC. Dynamics of interface displace ment in capillary flow. J Stat Phys, 2005, 121: 197–207

    Article  Google Scholar 

  39. Surmas R, dos Santos LOE, Philippi PC. Lattice Boltzmann simulation of the flow interference in bluff body wakes. Future Gener Comp Sys, 2004, 20: 951–958

    Article  Google Scholar 

  40. Facin PC, Philippi PC, dos Santos LOE. A non-linear lattice-Boltzmann model for ideal miscible fluids. Future Gener Comp Sys, 2004, 20: 945–949

    Article  Google Scholar 

  41. Philippi PC, Hegele LA, dos Santos LOE, Rodrigo S. From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models. Phys Rev E, 2006, 73: 056702

    Article  Google Scholar 

  42. Surmas R, Pico CE, dos Santos LOE, Philippi PC. Volume exclusion for reducing compressibility effects in lattice Boltzmann models. Int J Mod Phys, 2007, 18: 576–584

    Article  CAS  Google Scholar 

  43. Pico CE, dos Santos LOE, Philippi PC. A two-fluid BGK lattice Boltzmann model for ideal mixtures. Int J Mod Phys, 2007, 18: 566–575

    Article  CAS  Google Scholar 

  44. Philippi PC, Hegele LA, Surmas R, Siebert DN, dos Santos LOE. From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models. Int J Mod Phys, 2007, 18: 556–565

    Article  Google Scholar 

  45. Siebert DN, Hegele LA, Surmas R, dos Santos LOE, Philippi PC. Thermal lattice Boltzmann in two dimensions. Int J Mod Phys, 2007, 18: 546–555

    Article  Google Scholar 

  46. Wolf FG, dos Santos LOE, Philippi PC. Micro-hydrodynamics of immiscible displacement inside two-dimensional porous media. Microfluidics Nanofluidics, 2008, 4: 307–319

    Article  CAS  Google Scholar 

  47. Wolf FG, dos Santos LOE, Philippi PC. Modeling and simulation of the fluid-solid interaction in wetting. J Stat Mech-Theory Exp, 2009, P06008

  48. Guillot P, Colin A. Stability of parallel flows in a microchannel after a T junction. Phys Rev E, 2005, 72: 066301.

    Article  Google Scholar 

  49. Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys, 2005, 77: 977–1026

    Article  CAS  Google Scholar 

  50. Hudson SD, Goodrum WJ, Kathryn J, Beers L, Amis EJ. Microfluidic interfacial tensiometry. Appl Phys Lett, 2005, 87: 081905

    Article  Google Scholar 

  51. Cabral JT, Hudson SD. Microfluidic approach for rapid multicomponent interfacial tensiometry. Lab Chip, 2006, 6: 427–436

    Article  CAS  Google Scholar 

  52. Fang C, Hidrovo C, Wang FM, Eaton J, Goodson K. 3-D numerical simulation of contact angle hysteresis for microscale two phase flow. Int J Multiphase Flow, 2008, 34: 690–705

    Article  CAS  Google Scholar 

  53. Shan XW. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys Rev E, 2006, 73: 047701

    Article  Google Scholar 

  54. Fakhari A, Rahimian MH. Simulation of falling droplet by the lattice Boltzmann method. Commun Nonlinear Sci Numer Simulat, 2009, 14: 3046–3055

    Article  Google Scholar 

  55. Maruyama T, Matsushita H, Uchida JI, Kubota F, Kamiya N, Goto M. Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal Chem, 2004, 76: 4495–4500

    Article  CAS  Google Scholar 

  56. Dong HF, Zhang DL, Zhao YC, Chen GW, Yuan Q. Numerical simulation of immiscible two-phase flow in T-shaped microchannel (in Chinese). J Chem Ind Eng, 2008, 59: 1950–1957

    CAS  Google Scholar 

  57. Qian DY, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci, 2006, 61: 7609–7625

    Article  CAS  Google Scholar 

  58. Kreutzer MT, Kapteijin F, Moulijn JA, Heiszwolf JJ. Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels. Chem Eng Sci, 2005, 60: 5895–5916

    Article  CAS  Google Scholar 

  59. Taha T, Cui ZF. CFD modelling of slug flow in vertical tubes. Chem Eng Sci, 2006, 61: 676–687

    Article  CAS  Google Scholar 

  60. van Baten JM, Krishna R. CFD simulations of wall mass transfer for Taylor flow in circular capillaries. Chem Eng Sci, 2005, 60: 1117–1126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, Y., Yang, C., Jiang, Y. et al. Numerical simulation of immiscible liquid-liquid flow in microchannels using lattice Boltzmann method. Sci. China Chem. 54, 244–256 (2011). https://doi.org/10.1007/s11426-010-4164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4164-z

Keywords

Navigation