Skip to main content
Log in

Formation of hyperbranched polymers in atom transfer radical copolymerization of MMA and DVB

  • Articles
  • SPECIAL TOPIC / Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hyperbranched poly(methyl methacrylate)s (HPMMAs) have been successfully prepared by atom transfer radical copolymerization of MMA and divinylbenzene (DVB). Kinetic study shows complete consumption of the initiator in 0.5 h, and relatively low polymerization rate when DVB content in the feed was high. By analyzing MALDI-TOF spectra of the resulting copolymers, the linear A n B* (n = 0, 1, 2, 3) oligomers were formed in 0.5 h of polymerization, and then the oligomers reacted each other to form dimers, further reactions produced HPMMA. The SEC and NMR spectroscopies were used to trace the polymerization, and the results demonstrate that small amount of the branching reactions occur in the initial polymerization, and the branched polymers are significantly generated past a certain conversion depending upon the feed ratios. Raising the content of DVB in the monomer mixture can increase the pendent vinyl groups of the linear oligo-inimers, leading to gelation at low MMA conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitajyo Y, Nawa Y, Tamaki M, Tani H, Takahashi K, Kaga H, Satoh T, Kakuchi T. A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol. Polymer, 2007, 48: 4683–4690

    Article  CAS  Google Scholar 

  2. Gao Q, Liu PS. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage. J Mater Sci, 2007, 42: 5661–5665

    Article  Google Scholar 

  3. Fréchet JMJ, Henmi M, Gitsov II, Aoshima S, Leduc M, Grubbs RB. Self-condensing vinyl polymerization: An approach to dendritic materials. Science, 1995, 269: 1080–1083

    Article  Google Scholar 

  4. Jikei M, Kakimoto M. Hyperbranched polymers: A promising new class of materials. Prog Polym Sci, 2001, 26: 1233–1285.

    Article  CAS  Google Scholar 

  5. Gao C, Yan D. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29: 183–275

    Article  CAS  Google Scholar 

  6. Flory P. Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units. J Am Chem Soc, 1952, 74: 2718–2723

    Article  CAS  Google Scholar 

  7. Vanjinathan M, Shanavas A, Raghavan A, Nasar AS. Synthesis and properties of hyperbranched polyurethanes, hyperbranched polyurethane copolymers with and without ether and ester groups using blocked isocyanate monomers. J. Polym Sci Part A: Polym. Chem, 2007, 45: 3877–3893

    Article  CAS  Google Scholar 

  8. Zhu ZC, Pan CY. A Feasible synthetic route for linear PTHF-hyperbranched poly(phenyl sulfide) block copolymers Macromol Chem Phys, 2007, 208: 1274–1282

    Article  CAS  Google Scholar 

  9. Hong CY, Pan CY. Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization. Polymer, 2001, 42: 9385–9391

    Article  CAS  Google Scholar 

  10. He XH, Liang HJ, Pan CY. Monte Carlo simulation of hyper-branched copolymerizations in the presence of a multifunctional initiator. Macromol Theory Simul, 2001, 10: 196–203

    Article  CAS  Google Scholar 

  11. Kong LZ, Pan CY. Synthesis and characterization of hyperbranched polymers from the polymerization of glycidyl methacrylate and styrene using Cp2TiCl as a catalyst. Macromol Chem Phys, 2007, 208: 2686–2697

    Article  CAS  Google Scholar 

  12. Hawker CJ, Fréchet JMJ, Grubbs RB, Dao JL. Preparation of hyperbranched and star polymers by a “living”, self-condensing free radical polymerization. J Am Chem Soc, 1995, 117: 10763–10764

    Article  CAS  Google Scholar 

  13. Yan DY, Hou J, Zhu XY, Kosman JJ, Wu HS. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization. Macromol Rapid Commun, 2000, 21: 557–561

    Article  CAS  Google Scholar 

  14. Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in “living” radical polymerizations. Macromolecules, 1997, 30: 5192–5194

    Article  CAS  Google Scholar 

  15. Zhou P, Yang LP, Pan CY. One-pot synthesis of linear-hyper-branched diblock copolymers via self-condensing vinyl polymerization and ring opening polymerization. J Polym Sci Part A: Polym Chem, 2008, 46: 7628–7636

    Article  Google Scholar 

  16. Simon PFW, Müller AHE. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization. Macromolecules, 2001, 34: 6206–6213

    Article  CAS  Google Scholar 

  17. O’Brien N, McKee A, Sherrington DC, Slark AT, Titterton A. Facile, versatile and cost effective route to branched vinyl polymers. Polymer, 2000, 41: 6027–6031

    Article  Google Scholar 

  18. Baskaran D. Synthesis of hyperbranched polymers by anionic self-condensing vinyl polymerization. Macromol Chem Phys, 2001, 202: 1569–1575

    Article  CAS  Google Scholar 

  19. Baskaran D. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization. Polymer, 2003, 44: 2213–2220

    Article  CAS  Google Scholar 

  20. Isaure F, Cormack PAG, Graham S, Sherrington DC, Armes SP. Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent. Chem Commun, 2004, 9: 1138–1139

    Article  Google Scholar 

  21. Bütün V, Bannister I, Billingham NC, Sherrington DC, Armes SP. Synthesis and characterization of branched water-soluble homopolymers and diblock copolymers using group transfer polymerization. Macromolecules, 2005, 38: 4977–4982

    Article  Google Scholar 

  22. Li Y, Armes SP. Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP: Use of a cleavable disulfide-based branching agent. Macromolecules, 2005, 38: 8155–8162

    Article  CAS  Google Scholar 

  23. Wang AR, Zhu S. Branching and gelation in atom transfer radical polymerization of methyl methacrylate and ethylene glycol dimethacrylate. Polym Eng Sci, 2005, 45: 720–727

    Article  CAS  Google Scholar 

  24. Bannister I, Billingham NC, Armes SP, Rannard SP, Findlay P. Development of branching in living radical copolymerization of vinyl and divinyl monomers. Macromolecules, 2006, 39: 7483–7492

    Article  CAS  Google Scholar 

  25. Gong HD, Huang WY, Zhang DL, Gong FH, Liu CL, Yang Y, Chen JH, Jiang BB. Studies on the development of branching in ATRP of styrene and acrylonitrile in the presence of divinylbenzene. Polymer, 2008, 49: 4101–4108

    Article  CAS  Google Scholar 

  26. Wang AR, Zhu SP. Control of the polymer molecular weight in atom transfer radical polymerization with branching/crosslinking. J Polym Sci, Part A: Polym Chem, 2005, 43: 5710–5714

    Article  CAS  Google Scholar 

  27. Ren Q, Gong FH, Liu CL, Zhai GQ, Jiang BB, Liu C, Chen YH. Synthesis of branched polystyrene by ATRP exploiting divinylbenzene as branching comonomer. Eur Polym J, 2006, 42: 2573–2580

    Article  CAS  Google Scholar 

  28. Gao H, Min K, Matyjaszewski K. Determination of gel point during atom transfer radical copolymerization with cross-linker. Macromolecules, 2007, 40: 7763–7770

    Article  CAS  Google Scholar 

  29. Bouhier MH, Cormack PAG, Graham S, Sherrington DC. Synthesis of densely branched poly(methyl methacrylate)s via ATR copolymerization of methyl methacrylate and ethylene glycol dimethacrylate. J Polym Sci, Part A: Polym Chem, 2007, 45: 2375–2386

    Article  CAS  Google Scholar 

  30. Gao H, Miasnikova A, Matyjaszewski K. Effect of cross-linker reactivity on experimental gel points during ATRcP of monomer and cross-linker. Macromolecules, 2008, 41: 7843–7849

    Article  CAS  Google Scholar 

  31. París R, Mosquera B, Fuente JL. Atom transfer radical copolymerization of glycidyl methacrylate and allyl methacrylate, two functional monomers. Eur Polym J, 2008, 44: 2920–2926

    Article  Google Scholar 

  32. Liu B, Kazlauciunas A, Guthrie JT, Perrier S. One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules, 2005, 38: 2131–2136

    Article  CAS  Google Scholar 

  33. Liu B, Kazlauciunas A, Guthrie JT, Perrier S. Influence of reaction parameters on the synthesis of hyperbranched polymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer, 2005, 46: 6293–6299

    Article  CAS  Google Scholar 

  34. Vo CD, Rosselgong J, Armes SP, Billingham NC. RAFT synthesis of branched acrylic copolymers. Macromolecules, 2007, 40: 7119–7125

    Article  CAS  Google Scholar 

  35. Dong ZM, Liu XH, Lin Y, Li YS. Branched polystyrene with abundant pendant vnyl functional groups from asymmetric divinyl monomer. J Polym Sci, Part A: Polym Chem, 2008, 46, 6023-6034

  36. Yang HJ, Jiang BB, Huang WY, Zhang DL, Kong LZ, Chen JH, Liu CL, Gong FH, Yu Q, Yang Y. Development of branching in atom transfer radical copolymerization of styrene with triethylene glycol dimethacrylate. Macromolecules, 2009, 42: 5976–5982

    Article  CAS  Google Scholar 

  37. Odian G. Principles of Polymerization, New York: John Wiley & Sons. 1991. 480

    Google Scholar 

  38. Matyjaszewski K, Shipp DA, Wang JL, Grimaud T, Patten TE. Utilizing halide exchange to Improve control of atom transfer radical polymerization. Macromolecules, 1998, 31: 6836–6840

    Article  CAS  Google Scholar 

  39. Matyjaszewski K, Wang JL, Grimaud T, Shipp DA. Controlled/“living” atom transfer radical polymerization of methyl methacrylate using various initiation systems. Macromolecules, 1998, 31: 1527–1534

    Article  Google Scholar 

  40. Borman CD, Jackson AT, Bunn A, Cutter AL, Irvine DJ. Evidence for the low thermal stability of poly(methyl methacrylate) polymer produced by atom transfer radical polymerisation. Polymer, 2000, 41: 6015–6020

    Article  CAS  Google Scholar 

  41. Jackson AT, Bunn A, Priestnall IM, Borman CD, Irvine DJ. Molecular spectroscopic characterisation of poly(methyl methacrylate) generated by means of atom transfer radical polymerisation (ATRP). Polymer, 2006, 47: 1044–1054

    Article  CAS  Google Scholar 

  42. Singha NK, Rimmer S, Klumperman B. Mass spectrometry of poly (methyl methacrylate) (PMMA) prepared by atom transfer radical polymerization (ATRP). Eur Polym J, 2004, 40: 159–163

    Article  CAS  Google Scholar 

  43. Hild G, Okasha R. Kinetic investigation of the free radical crosslinking copolymerization in the pre-gel state, 1. Styrene/m- and p-divinylbenzene systems. Macromol Chem, 1985, 186: 93–110

    Article  CAS  Google Scholar 

  44. He XH, Liang HJ, Pan CY. Self-condensing vinyl polymerization in the presence of multifunctional initiator with unequal rate constants: Monte Carlo simulation. Polymer, 2003, 44: 6697–6706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CaiYuan Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Pan, C. Formation of hyperbranched polymers in atom transfer radical copolymerization of MMA and DVB. Sci. China Chem. 53, 2440–2451 (2010). https://doi.org/10.1007/s11426-010-4155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4155-0

Keywords

Navigation